Ethernet MAC: CSMA/CD

• CS (Carrier Sense): Can detect if some other node is using the link

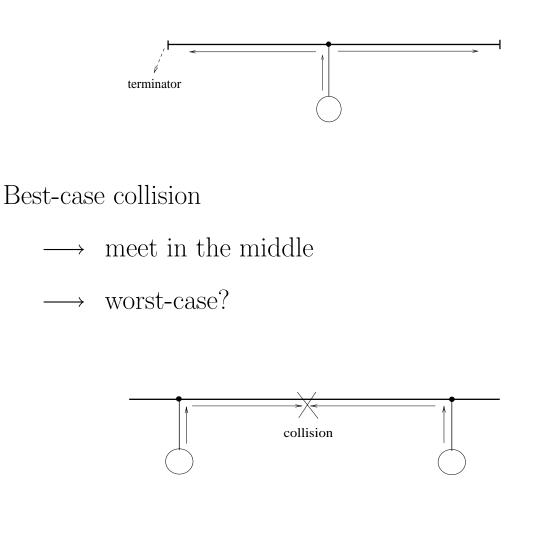
 \rightarrow rule: if so, abstein

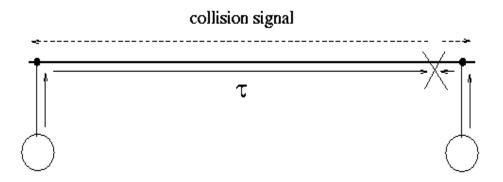
• *MA (Multiple Access)*: Multiple nodes are allowed simultaneous access

 \rightarrow rule: if channel seems silent, send

• *CD (Collision Detection)*: Can detect if simultaneous access has occured

 \rightarrow rule: if collision, retry later


Wired vs. wireless media:


- \longrightarrow CD is a key difference
- \longrightarrow diffcult to detect collision while transmitting

Signal propagation and collision:

Bi-directional propagation

 \longrightarrow terminator absorbs signal: prevent bounce back

- sender needs to wait 2τ sec before detecting collision
- for 2500 m length, 51.2 μ s round-trip time (2 τ)
- enforce 51.2 μ s slot time
- \bullet at 10 Mbps, 512 bits; i.e., minimum frame size
 - \rightarrow assures collision detection

Hence, upon detecting collision:

 \therefore make sure to transmit at least 512 bits

$$\longrightarrow 2 \times$$
 delay-bandwidth product

 $\longrightarrow 6 + 6 + 2 + 46 + 4 = 64 \text{ B} = 512 \text{ bits}$

When to retry: exponential backoff

- 1. Wait for $0 \le X \le 51.2 \ \mu$ s before first retry
- 2. On *i*'th collision, wait for $0 \le X \le 2^{i-1} 51.2 \ \mu$ s before next attempt
- 3. Give up if i > 16
 - \longrightarrow a form of stop-and-wait (what's the ACK?)
 - \longrightarrow pretty drastic backoff: is it necessary?

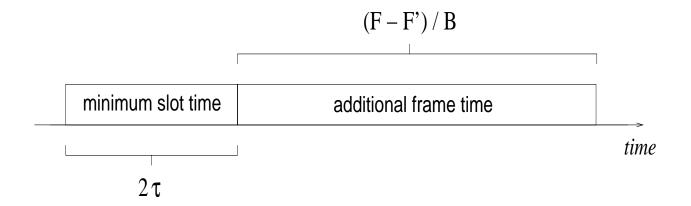
CSMA/CD Throughput

 \longrightarrow optimistic: best case scenario

Set-up:

- frame size F
- length of wire L
- \bullet bandwidth B
- slot time 2τ

 $\rightarrow \tau = L/SOL$


Facts:

 \bullet bits sent during 2τ

 $\rightarrow F' = 2\tau B$

• if $F' \ge F$ then done, else send F - F' more bits \rightarrow frame time: time elapsed to send frame

Snapshot over time:

Throughput (bits-over-time):
$$\label{eq:throughput} {\rm throughput} \ = \ \frac{F}{2\tau + (F-F')/B}$$

Further calculation yields:

$$= \frac{F}{2L/\text{SOL} + (F - F')/B}$$
$$= \frac{1}{2L/(\text{SOL} F) + (F - F')/(BF)}$$

throughput =
$$\frac{1}{2L/(\text{SOL}\,F) + (F - F')/(BF)}$$

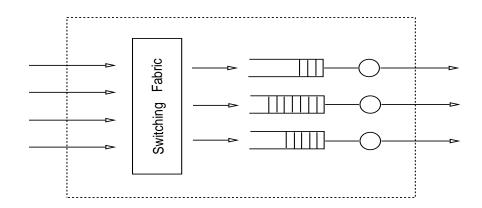
how do system design parameters L, F, and B influence throughput?

- If $L \uparrow$ then throughput \downarrow
- What about B and F?

Is the above scenario realistic?

 \longrightarrow ignored impact of collision under many users

Shape of throughput as a function of number of users is unimodal


 \longrightarrow kind of "dome" shaped

In practice today (Feb. 19, 2004): switched Ethernet

- contention moved from bus to switch
- CSMA/CD is still there but secondary

 \rightarrow for backward compatibility

Output-buffered switch:

- \bullet only NICs speak CSMA/CD
- transfer of Ethernet frames between NICs

 \rightarrow switched

• when buffer overflow, same as "collision"

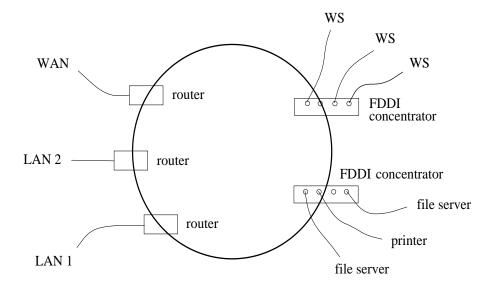
Most popular: FastEthernet (100 Mbps), 10Base-T (10 Mbps), Gigabit Ethernet

- \bullet FastEthernet (100Base-T) is switched
 - \rightarrow 100 Base-T uses same frame size as 10 Base-T
- Gigabit Ethernets use broadband signalling
 - \rightarrow good old baseband Manchester is gone
 - \rightarrow backward compatible frame format
- 100VG-AnyLAN (IEEE 802.12) uses priority scheduling (not CSMA/CD)

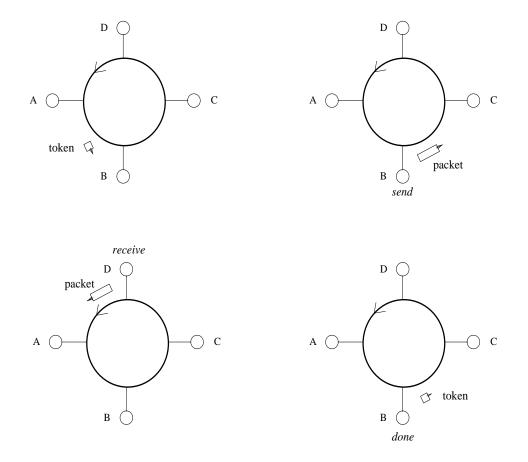
Gigabit Ethernet: popular backbone technology (e.g., Purdue Univ.)

To the desktop: FastEthernet

 \longrightarrow how fast can a PC send/receive?

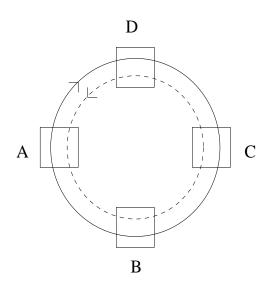

 \longrightarrow fiber-based token ring architecture

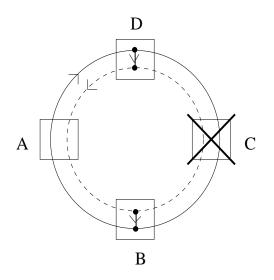
High-bandwidth extension of IBM 4 Mbps token ring and 16 Mbps IEEE 802.5 token ring standard.

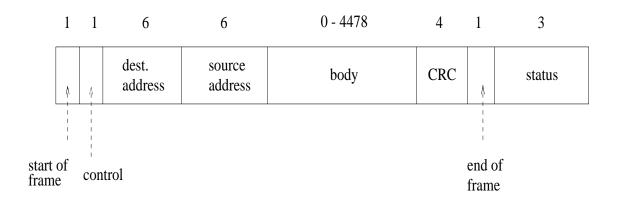

 \rightarrow 100 Mbps bandwidth

Mostly used as high-bandwidth LAN backbone.

 \rightarrow metropolitan/campus distance: MAN


Basic operation: B wishes to send to send to D




- \bullet wait for token
- grab token; send data
- wait for ACK; release token

Fault-tolerance:

- \longrightarrow note: ring breaks down under single failure
- \longrightarrow two half duplex channels in opposite direction
- \longrightarrow 2-fold redundancy

- frame size < 4500 B
- 4B/5B encoding
- synchronous/asynchronous data
- $\bullet~2~{\rm km}$ inter-station distance
- 200 km diameter (multimode fiber); 100 km circumference

Compare against Ethernet's CSMA/CD.

- \longrightarrow round-robin reservation
- \longrightarrow absence of MA and collision
- \longrightarrow determinism vs. indeterminism
- \longrightarrow imperfect QoS assurance
- \longrightarrow performance vis-à-vis CSMA/CD?

Cooperative vs. noncooperative protocols

- \longrightarrow robust if some users use selfish MAC?
- \longrightarrow could be malicious: disruption is goal