Network performance

An overview of key concepts.

Three yardsticks or performance measures:

- throughput: bps or b/s (bits-per-second)
- latency: msec, ms (millisecond)

 \rightarrow signal propagation speed

• delay: msec

 \rightarrow includes software processing overhead

• jitter: delay variation

 \rightarrow standard deviation etc.

Bandwidth vs. throughput:

bandwidth—maximum data transmission rate achievable at the hardware level; determined by signalling rate of physical link and NIC.

throughput—maximum data transmission rate achievable at the software level; overhead of network protocols inside OS is accounted for.

reliable throughput—maximum reliable data transmission rate achievable at the software level; effect of recovery from transmission errors and packet loss accounted for.

- \longrightarrow true measure of communication speed
- \longrightarrow "goodput" or "effective throughput"
- \longrightarrow vs. "raw throughput"

Trend on protocol implementation and overhead side:

migration of protocol software functionality into NICs; NIC is becoming a powerful, semi-autonomous device

network processors: programmable NICs

 \longrightarrow as opposed to ASIC based devices

- \longrightarrow trade-off between hardware & software
- \longrightarrow boundary between hardware & software blurred

With proliferation of wireless networks, lower layers have become important in network programming and system design

- \longrightarrow e.g., programming iPAQ with WLAN card
- \longrightarrow 802.11b WLAN: 11, 5.5, 2 and 1 Mbps

Meaning of "high-speed" networks:

- signal propagation speed is bounded by SOL (speed-of-light)
 - $\rightarrow \sim \! 300 \mathrm{K} \; \mathrm{km/s}$ or $\sim \! 186 \mathrm{K} \; \mathrm{miles/s}$
 - \rightarrow optical fiber, copper: nearly same
 - \rightarrow latency: Purdue to West Coast
 - \rightarrow around 2000 miles: ~10 msec (= 2000/186000)
 - \rightarrow lower bound
 - \rightarrow geostationary satellites: ~ 22.2 K miles/s
 - \rightarrow latency: ~ 120 msec
 - \rightarrow end-to-end (one-way): \sim 240 msec
 - \rightarrow round-trip: ${\sim}480~{\rm msec}$
 - \rightarrow typically: \sim 500 msec

- thus: can only increase "bandwidth"
 - \rightarrow analogous to widening highway, i.e., more lanes
 - \rightarrow simulatenous transmission
 - \rightarrow a single bit does not travel faster
 - \rightarrow "high-speed" \Leftrightarrow "many lanes"
 - \rightarrow completion time of large files faster
 - \rightarrow in this sense, "higher" speed
 - \rightarrow more accurate term: broadband networks

Key issue with broadband/high-speed networks:

- \rightarrow fat (broadband) and long pipes (coast-to-coast)
- \rightarrow a lot of traffic in transit
- \rightarrow total transit traffic: length \times width
- \rightarrow length \mapsto delay and width \mapsto bandwidth
- \rightarrow called delay-bandwidth product
- \rightarrow packet in transit: not under control of sender
- \rightarrow significant damage before detection & recovery
- \rightarrow reactive cost
- \rightarrow limitation of feedback controls (e.g., TCP)

Some units:

Gbps (Gb/s), Mbps (Mb/s), kbps (kb/s):

 10^9 , 10^6 , 10^3 bits per second; indicates data transmission rate; influenced by clock rate (MHz/GHz) of signaling hardware; soon Tbps.

 \rightarrow communication rate: factors of 1000

Common bit rates:

- 10 Mbps (10BaseT), 100 Mbps (100BaseT), 1000 Mbps (1000BaseT)
- 11 Mbps (and 5, 2, 1 Mbps) for 802.11b WLAN \rightarrow 5, 2 and 1 Mbps: fallback rates
- 54 Mbps (and 48, 36, 24, 18, 12, 9, 6 Mbps) for 802.11g/a WLAN
- 100 Mbps (FDDI)
- 64 kb/s (toll quality digitized voice)
- ~ 10 kbps (cell phone quality voice)
- 144kb/s (ISDN line 2B + D service)
- 1.544 Mbps (T1), 44.736 Mbps (T3)
- 155.52 Mbps (OC-3), 622.08 Mbps (OC-12)
- 1244.16 Mbps (OC-24), 2488.32 Mbps (OC-48)
- popular backbone speeds: 1 GigE and 9953.28 Mbps (OC-192)

22223 ALRO ST CONF HOM HOM HOM HOM HOM 64.000 init rel ites 21 CAH 10,00 8.3 NACT'S IS and I ARE RECEIPTED CONTRACTOR CONTRACT 1.548/2 10546 1646 1996 2 Ggl Purdue University Data Network 10 Olph Version 1.3 NOC Copy

Purdue's backbone network (Fall 2004): ITaP

Level3 backbone network: www.level3.com

 \rightarrow 10 Gbps backbone (green): same speed as Purdue \rightarrow part of backbone (red): OC-48 GB, MB, kB:

 2^{30} , 2^{20} , 2^{10} bytes; size of data being shipped; influenced by the memory structure of computer; already TB.

 \longrightarrow data size: factors of 1024

Common data sizes:

- 512 B, 1 kB (TCP segment size)
- 64 kB (maximum IP packet size)
- 53 B (ATM cell)
- 810 B (SONET frame)

Packet, frame, cell, datagram, message, etc.

 \longrightarrow "packet": most generic term

Conventional usage

- frame: LAN-level
- datagram: IP packets
- cell: ATM packets
- PDU (protocol data unit): generic
- message: high-level (e.g., e-mail)

What is traveling on the wires?

Mixed data:

- bulk data, audio/voice, video/image, real-time interactive data, etc.
- $\longrightarrow~>85\%$ of Internet traffic is bulk TCP traffic
- \longrightarrow due to Web/HTTP
- \longrightarrow barriers to streaming traffic implosion
- \longrightarrow technical and other

Tilting toward multimedia data; i.e., traffic with QoS requirements including real-time constraints. \longrightarrow multimedia: MPEG compressed video

Why?

• pattern of scene changes in movies

 \rightarrow within a scene few changes

- across scenes, significant scenary changes
 - \rightarrow e.g., action movies
- video compression
 - \rightarrow utilize inter-frame compression

Why?

- \bullet bulk data: 80/20 rule-of-thumb
- majority of files are small, a few very large
 - \rightarrow disproportionate contribution to total traffic
 - \rightarrow "elephants and mice"

Usage pattern in the real-world: uneven or "unfair"

Given mixed payload:

Data networks capable of carrying diverse payload on the same network is a recent phenomenon.

- \longrightarrow killer app: VoIP (voice-over-IP)
- \longrightarrow other?
- \longrightarrow e.g., on-demand audio/video (iTunes)

But, even today, much of voice traffic (telephony) is carried on an entirely separate communication network vis-àvis data traffic, operating under different internetworking principles from the latter.

- \longrightarrow time-division multiplexing (TDM) for telephony
- \longrightarrow packet switching for data networks

How is time—viewed as a resource—shared?

Time-division multiplexing:

Packet switching:

How is "real estate" shared?

Circuit switching: Virtual channel is established and followed during the lifetime of an end-to-end connection.

 \longrightarrow static route

- \longrightarrow in-order delivery
- \longrightarrow small routing table

Telephone networks (and ATM networks).

Packet switching: Every packet belonging to an endto-end conversation is an independent entity; may take a different route from other packets in the same connection.

- \longrightarrow dynamic route
- \longrightarrow out-of-order delivery
- \longrightarrow larger route table

Trade-off between processing overhead and route goodness Trend: convergence to packet-switched technology

- \longrightarrow layer 2 switching in the backbone
- \longrightarrow move away from IP due to overhead
- \longrightarrow IP critical at peering points

Yet another drawback of packet switching:

- \longrightarrow "bully phenomenon"
- \longrightarrow video: 24 frames-per-second (f/s)
- \longrightarrow voice: 8000 samples-per-second (s/s)
- \longrightarrow what to do?

Asynchronous transfer mode (ATM):

 \rightarrow 53 byte packet or *cell*.

Synergy of all forms of data, audio, video, bulk, etc. One unified network with "integrated" services.

Addresses bully problem but ...

- \longrightarrow significant overhead (48 + 5)
- \longrightarrow why 48 bytes?

- \longrightarrow performs its own routing
- \longrightarrow function duplication
- \longrightarrow very complex (overloaded with features)
- \longrightarrow confusion with "real" ATM
- \longrightarrow peaked in mid-90s; crashed in late 90s

Much has migrated to new layer 2 switching technology

- \longrightarrow MPLS (multiprotocol label switching)
- \longrightarrow ATM community reincarnated as MPLS . . .
- \longrightarrow supporting role to IP

In the meantime, at routers receiving mixed payload ...

Try to avoid packet loss, but no loss comes at a cost:

- fast memory (buffer) is not cheap
- packets may have to wait in line for their turn
 - \rightarrow queueing delay
 - \rightarrow who gets preference?

- FIFO (first-in-first-out)
- priority queue
- \bullet round robin + weighted fair queue
 - \rightarrow use TOS field of IPv4 header to encode priority
 - \rightarrow packet format: header + payload
- \bullet reservation
 - \rightarrow software-based "line leasing"

Is adding more and more buffer space a good solution?

- \longrightarrow no: related to "elephants and mice"
- \longrightarrow bandwidth is preferred (and, presently, cheaper)

When is it outright bad?

 \longrightarrow real-time multimedia payload

How to make sense of all this?

Study of networks can be divided into three aspects:

- architecture
 - \rightarrow system design or blue print
- algorithms
 - \rightarrow how do the components work
- implementation
 - \rightarrow how are the algorithms implemented

Architecture

- \bullet hardware
 - communication or data link technology (e.g., Ethernet, SONET, CDMA/DSSS, TDMA)
 - hardware interface standards (e.g., EIA RS 232C serial communication between DTE and DCE)
- software
 - conceptual organization (e.g., ISO/OSI 7 layer reference model, ATM network model)
 - protocol standards (e.g., IAB RFC—TCP, UDP, IP, Mobile IP; ISO MPEG)

 \longrightarrow the *what* over *how*

Provides the "skeleton" for everything else.

... speaking of standards,

- ISO (International Standards Organization). ISO/OSI 7-layer reference model.
- ITU (International Telecommunications Union). Successor of CCITT (used to be parent organization), U.N.-chartered.
- IEEE. Professional society, LAN standards; e.g., IEEE 802.3 (Ethernet), IEEE 802.11 (WLAN), IEEE 802.5 (token ring).
- IETF (Internet Engineering Task Force). Internet protocol standardization body.
- W3C. World Wide Web consortium. Application layer web protocols and representations.
- ATM Forum. Industry organization (defunct).
- many others . . .

Layering: protocol stack

Achieves abstraction, modularization; two types of interfaces:

- vertical: inter-layer communication
 - SAP (service access point)
 - PDU (protocol data unit)
- horizontal: peer-to-peer

 \longrightarrow note processing of packet at B

Encapsulation:

- protocol stack (push/pop)
- \bullet header/trailer overhead
 - \rightarrow e.g., addressing, error detection
- \bullet segmentation/fragmentation and reassembly

Outdated; still semi-useful as historical reference point.

Shows logical relationship between protocol modules in the protocol stack.

Algorithms

- error detection and correction (e.g., checksum, CRC)
- medium access control (e.g., CSMA/CD, token ring, CSMA/CA)
- routing (e.g., shortest path—Dijkstra, Bellman & Ford; policy based)
- congestion control (e.g., TCP window control, multimedia rate control)
- scheduling (e.g., FIFO, priority, WFQ)
- traffic shaping and admission control
- packet filtering (e.g., firewalls)
- overlay networks (e.g., VPNs)

 \longrightarrow how aspect of computer networks

Impacts network performance by controlling the underlying resources provided by the network architecture. Example: reliable communication

Packets may get

- corrupted due to errors (e.g., noise)
- dropped due to buffer overflow
- dropped due to aging or outdatedness—TTL (timeto-live field in IP)
- lost due to link or host failures

Internet philosophy: reliable transport (TCP) over unreliable internetwork (IP). Use retransmission and acknowledgment (ACK).

- acknowledge receipt (positive ACK)
- absence of ACK indicates probable loss
- \ldots or vice versa (negative ACK); when to use which \ldots

Forward error-correction (FEC):

... works if at most two out of every three packets get dropped.

- send redundant information
- need to know properties of how losses occur
- appropriate for real-time contrained data
 - \longrightarrow FEC vs. BEC (backward error-correction)

Pros/cons vis-à-vis retransmission ...

Implementations

Same algorithm can be implemented in different ways.

Key issue: efficiency.

- reduce copying operation
 - \rightarrow pass pointers instead of value
 - \rightarrow in-place processing
- locality of reference
 - \rightarrow packet trains
- multi-threading to hide communication latency
- multi-threading to reduce context-switch overhead

Although at times ugly, a must to squeeze the most out of performance.

 \longrightarrow OO and modularity: secondary to performance

Software clock:

- \longrightarrow single hardware clock to emulate multiple clocks
- \longrightarrow timer for keeping track of events

Example: want to be notified at time 1 sec, 5 sec, 7 sec, 34 sec from now.

Hardware clock interrupt handling routine:

- \longrightarrow kept minimal
- \longrightarrow house-keeping chores through software clock

- keep copy operation to minimum
- use shared memory with pointers
 - \rightarrow vertical design
- use horizontal design to achieve parallelism
 - \rightarrow multi-threading

- \longrightarrow data structure: e.g., trie, hashing for IP table
- \longrightarrow 300,000+ route entries
- \longrightarrow garbage collection

Keep number of system calls small.

 \longrightarrow system call is costly

 \longrightarrow stay in user space, if possible

Disk I/O.