INTRODUCTION

What is a computer network?

Components of a computer network:

- hosts (PCs, laptops, handhelds)
- routers & switches (IP router, Ethernet switch)
- links (wired, wireless)
- protocols (IP, TCP, CSMA/CD, CSMA/CA)
- applications (network services)
- humans and service agents

Hosts, routers & links form the *hardware* side.

Protocols & applications form the *software* side.

Protocols can be viewed as the “glue” that binds everything else together.
A physical network:
Protocol example: low to high

- NIC (network interface card): hardware
 → e.g., Ethernet card, WLAN card
- device driver: part of OS
- ARP, RARP: OS
- IP: OS
- TCP, UDP: OS
- OSPF, BGP, HTTP: application
- web browser, ssh: application

→ multi-layered glue

What is the role of protocols?

→ facilitate communication or networking
Simplest instance of networking problem:

Given two hosts A, B interconnected by some network N, facilitate communication of information between A & B.

Information abstraction

- representation as objects (e.g., files)
- bytes & bits
 \rightarrow digital form
- signals over physical media (e.g., electromagnetic waves)
 \rightarrow analog form
Minimal functionality required of A, B

- encoding of information
- decoding of information

\rightarrow data representation & a form of translation

Additional functionalities may be required depending on properties of network N

- information corruption
 $\rightarrow 10^{-9}$ for fiber optic cable
 $\rightarrow 10^{-3}$ or higher for wireless
- information loss: packet drop
- information delay: like toll booth, airport
- information security
Network N connecting two or more nodes can be

- point-to-point links
- multi-access links
- internetworks

→ physical vs. logical topology
→ e.g., peer-to-peer, VPN

Network medium may be

- wired
- wireless

Node (e.g., hosts, routers) may be

- stationary
- mobile
Point-to-point links

\[A \quad \quad \quad \quad \quad \quad \quad B \]

- various “cables”
- line of sight wireless communication
 \[\quad \rightarrow \quad \text{directional antennas} \]
- no addressing necessary
 \[\quad \rightarrow \quad \text{special case} \]
Multi-access links

- bus (e.g., old Ethernet)
- wireless media
 → omni-directional antennas
- broadcast mode (physical; not logical)
 → listen to everything: promiscuous mode
- access control: i.e., bus arbitration
 → resolve contention and recover from interference
- addressing necessary
Internetwork

- recursive definition
 - point-to-point and multi-access: internetwork
 - composition of one or more internetworks
- addressing necessary
- path selection between sender/receiver: routing
- how much to send: congestion control
- protocol translation: internetworking
- location management: e.g., Mobile IP
LAN (local area network) vs. WAN (wide area network) distinction:

- **LAN**: point-to-point, multi-access
- **WAN**: internetwork

→ geographical distinction is secondary
→ often go hand-in-hand
→ counter example?
Myriad of different LAN technologies co-existing in a WAN. For example:

- Fast Ethernet (100 Mbps)
- Gigabit Ethernet (1000 Mbps)
- WLAN (54 or 11 Mbps)
- FDDI (Fiber Distributed Data Interface)
- wireless Ethernet (11 Mbps, 54 Mbps)
- SONET
- ATM
- modem/DSL

→ WAN is a collection of LANs
Each LAN, in general, speaks a different language.

→ message format

→ procedural differences

Internetworking solves this problem by translating everything to IP . . .

→ technical definition of Internet

But:

→ IP is not necessary

→ e.g., large systems of layer 2 switches

→ trend: L2 (70s & 80s) → IP (90s) → L2 (Y2K+)

→ IP remains central glue
Remark on addresses (aka names):

Communicating entities are *processes* residing on nodes A and B running some operating system.

Thus an *address* must also identify which process a message is destined for on a host.

\rightarrow e.g., port number abstraction
Key Issues

Fault-tolerance

The larger the network, the more things can go wrong.

E.g.: link/node failures, message corruption, software bugs

→ managing downtime: tier-1 providers

→ 99.999%

Two types of failures:

• independent

• correlated
In a network system with \(n \) components, assume a component fails with independent probability \(p \)

\[\text{expected number of failures: } n \cdot p \]

\[\text{probability of no failures: } (1 - p)^n \]

\[\text{probability of } k \text{ simultaneous failures: } p^k \]

Thus correlated failures have miniscule probability.

\[\text{exponentially small in } k \]
In reality, failures are not independent.

→ e.g., power outage, natural disasters

We have:

→ Murphy’s Law

• issue of reliable communication

• reliable network services

→ main principle: redundancy

• Examples:

 – routing of messages: alternate/back-up routes

 – domain name servers: duplication

 – transmission by space probes: forward error correction (FEC)

 → also used for multimedia traffic
Network security

Features:

• confidentiality: encryption
• integrity: message has not been tampered
• authentication: sender really is who she claims to be

→ “CIA”

→ foundation: cryptography

→ end-to-end

→ networking problem?
Modern security vulnerabilities:

- denial of service (DoS) attack
 - e.g., SYN flooding
- distributed DoS (DDoS) attack
 - e.g., commercial, personal, infrastructure
- worm attacks: e.g., CodeRed, Blaster, ...
 - buffer overflow: mainly bugs in MS DLLs
- spam mail (security issue?)
• with fault-tolerance impacts QoS (quality of service)
 → Aug. 04: US broadband deployment exceeds dial-up
• security: trade-off with overhead
 → what is the desired operating point?
 → too much \Rightarrow too slow
 → too little \Rightarrow too vulnerable

For example: secure routing (S-BGP)
 \rightarrow “BBN vs. Cisco”
Big picture:

-→ points in the same spectrum
-→ malicious (Byzantine) vs. non-malicious
-→ availability
-→ service assurances
Performance

Issues:

• excessive traffic can cause congestion (analogous to highways)

• traffic volume exhibits large fluctuations
 → burstiness

• multimedia traffic is voluminous (even for single user)

• ubiquitous access
 → wired/wireless Internet

Potential for bottleneck development

→ spontaneous or persistent

→ similar consequences as failures
Different applications require different levels of service quality.

Challenges:

- how to provide customized QoS
- many users and applications: scalability
- must interoperate with legacy Internet

Current state:

- overprovisioning
 - “throw bandwidth at the problem”
 - tier-1 ISPs use sophisticated traffic engineering
- still no Internet QoS
 - changing with VoIP and content deployment
- not economic
 - few tier-1 providers make money
Data networking, telephony, and content convergence

→ Y2K+ trend

• VoIP (Voice-over-IP): wired world
 → traditional TDM-based telephony system is entirely separate network
 → economic factors are dictating convergence
 → from KaZaA to Skype

• cellular voice networks: 2G, 2.5G, 3G
 → what is 4G?
 → telcos/cellular providers are concerned
 → take-over by WLAN + IP?
 → strategy: active participation
• peer-to-peer: rampant content dissemination
 → from audio to movies
 → content providers need to get into the action
 → do not want to get into the action

6 question:
 → what will the wireless/wireline future hold?

Mixture of high bandwidth/low bandwidth networks, wireline/wireless, . . .