CS 422

Park

TCP connection establishment (3-way handshake):

A B

SYN =1, Seg. No.=X

SYN=1, Seq.No.=Y

ACK =1, Ack.No.=X +1

ACK =1, Ack.No.=Y +1

e X Y are chosen randomly
— sequence number prediction

e piggybacking

CS 422 Park

2-person consensus problem: are A and B in agreement
about the state of affairs after 3-way handshake?

in general: impossible
can be proven
“acknowledging the ACK problem”

also TCP session ending

Ll

lunch date problem

CS 422 Park

TCP connection termination:

A . B

FIN=1, Seqg.No.=Y
Ack.No.=X +1

Seg. No. =X +1
Ack.No.=Y +1

e full duplex
e half duplex

CS 422 Park

More generally, finite state machine representation of TCP’s
control mechanism:

—— state transition diagram

Passive open Close "_ y
Close',
LISTEN Vo
ll \ \
,"'r.l \\\ \l
SYNSYN +AC‘E/ e ‘\\\‘ Send/SYN |
SYN RCVD [1———— OYNSYN+ACK™— SYN_ SENT
ACK “"\,\ /" SYN + ACKIACK
|
|
CloseFIN ESTABLISHED
|
."III K.
1 CloseFN_~ - _FANACK
FIN_WAIT 1 CLOSE WAIT
S o FNACK T
Ack o '\} CloseTN
r RN
—T %
FIN_WAIT_? ‘%;»,o CLOSNG LAST ACK
(N lACK ACK
_ FANACK N
~ TIME_WAIT CLOSED

CS 422 Park

Features to notice:

e Connection set-up:

— client’s transition to ESTABLISHED state without
ACK

— how is server to reach ESTABLISHED if client ACK
is lost?

— ESTABLISHED is macrostate (partial diagram)
e Connection tear-down:

— three normal cases
— special issue with TIME WAIT state
— employs hack

CS 422 Park

TCP’s sliding window protocol

LastByteSent
Sender: l
Byte
Stream
LastByteAcked LastByteWritten
Receiver: NextBytjExpected
Byte
XX Stream
LastByteRead LastByteRcvd

e sender, receiver maintain buffers MaxSendBuffer,
MaxRcvBuffer

CS 422 Park

Note asynchrony between TCP module and application.

Sender side: maintain invariants

e LastByteAcked < LastByteSent < LastByteWritten

e LastByteWritten—LastByteAcked < MaxSendBuffer

— buffer flushing (advance window)

— application blocking
e LastByteSent—LastByteAcked < AdvertisedWindow

Thus,

EffectiveWindow = AdvertisedWindow—

(LastByteSent — LastByteAcked)

— upper bound on new send volume

CS 422 Park

Actually, one additional refinement:

— CongestionWindow

EffectiveWindow update procedure:

EffectiveWindow = MaxWindow—
(LastByteSent — LastByteAcked)

where

MaxWindow =

min{ AdvertisedWindow, CongestionWindow }

How to set CongestionWindow.

— domain of TCP congestion control

CS 422 Park

Recelver side: maintain invariants

e LastByteRead < NextByteExpected <
LastByteRcvd + 1

e LastByteRcvd — NextByteRead < MaxRcvBuffer

— buffer flushing (advance window)

— application blocking

Thus,

AdvertisedWindow = MaxRcvBuffer—
(LastByteRcvd — LastByteRead)

CS 422 Park

[ssues:
How to let sender know of change in receiver window size

after AdvertisedWindow becomes 07

o tricger ACK event on receiver side when

AdvertisedWindow becomes positive

e sender periodically sends 1-byte probing packet

— design choice: smart sender/dumb receiver

—— same situation for congestion control

CS 422 Park

Silly window syndrome: Assuming receiver buffer is full,
what if application reads one byte at a time with long
pauses’

e can cause excessive 1-byte traffic

e if AdvertisedWindow < MSS then set
AdvertisedWindow < (

CS 422 Park

Do not want to send too many 1 B payload packets.

Nagle’s method:

e rule: connection can have only one such unacknowl-
edged packet outstanding

e while waiting for ACK, incoming bytes are accumu-
lated (i.e., buffered)

. compromise between real-time constraints and effi-
clency.

— useful for telnet/ssh-type interactive applications

CS 422 Park

Sequence number wrap-around problem: recall sufficient
condition

SenderWindowSize < (MaxSeqNum + 1)/2
— 32-bit sequence space/16-bit window space

However, more importantly, time until wrap-around im-
portant due to possibility of roaming packets.

bandwidth time until wrap-around f
T1 (1.5 Mbps) 6.4 hrs
Ethernet (10 Mbps) 57 min
T3 (45 Mbps) 13 min
F/E (100 Mbps) 6 min
OC-3 (155 Mbps) 4 min
OC-12 (622 Mbps) 55 sec
OC-24 (1.2 Gbps) 28 sec

CS 422 Park

RTT estimation

... iImportant to not underestimate nor overestimate.

Karn/Partridge: Maintain running average with precau-

tions

EstimateRTT < « - EstimateRTT + [- SampleRTT

e SampleRTT computed by sender using timer
ea+ =1 08<a<0901<p<0.2

e TimeOut < 2 -EstimateRTT or

TimeOut < 2 - TimeOut (if retransmit)

— need to be caretful when taking SampleRTT
— infusion of complexity

— still remaining problems

CS 422 Park

Hypothetical RTT distribution:

Samples # Samples

RTT RTT

—— need to account for variance

—— not nearly as nice

CS 422 Park

Jacobson /Karels:

e Difference = SampleRTT — EstimatedRTT
e EstimatedRIT = EstimatedRTT + ¢ - Difference

e Deviation = Deviation+d(|Difference|—Deviation)

Here 0 < 6 < 1.

Finally,

e TimeOut = i - EstimatedRTT + ¢ - Deviation

where =1, ¢ = 4.

— persistence timer

— how to keep multiple timers in UNIX

