
CS 422 Park

IPv6 header format:

destination address

source address

traffic classversion flow label

payload length next header hop limit

128

128

88

20

16

84

• traffic class: similar role as TOS field in IPv4

• flow label: flow label + source address

→ per-flow traffic management

→ significant extra bits

• next header: similar to IPv4 protocol field

→ plus double duty for option headers

• note missing fields

CS 422 Park

• Dynamically assigned IP addresses

→ share an IP address pool

→ reusable

→ e.g., DHCP (dynamic host configuration protocol)

→ UDP-based client/server protocol (ports 67/68)

→ note: process/daemon based service

→ used by access ISPs, enterprises, etc.

→ where are the IP address savings?

Old days of non-permanent dial-up modems . . .

CS 422 Park

• Network address translation (NAT)

→ dynamically assigned + address translation

→ private vs. public IP address

→ private: Internet routers discard them

→ e.g., 192.168.0.0 is private

→ 10.x.x.x are also private

→ useful for home networks, small businesses

→ also industry and university research labs

CS 422 Park

Example: network testbed intranet (HAAS G50)

• intranet NICs have 10.0.0.0/24 addresses

→ each interface: a separate subnet

• only one of the routers connected to Internet

CS 422 Park

• NAPT (NAT + port)

→ variant of NAT: borrow src port field as address bits

Ex.: 192.168.10.10 and 192.168.10.11 both map to 128.10.27.10

but

→ 192.168.10.10 maps to 128.10.26.10:6001

→ 192.168.10.11 maps to 128.10.26.10:6002

What about port numbers of 192.168.10.10 and 192.168.10.11?

→ e.g., client process bound to 192.168.10.10:22222

→ e.g., client process bound to 192.168.10.11:33333

Doesn’t matter: NAPT translation table entries

→ 192.168.10.10:22222 maps to 128.10.26.10:6001

→ 192.168.10.11:33333 maps to 128.10.26.10:6002

CS 422 Park

For example:

if 192.168.10.10:22222 is a web browser (say Firefox) down-

loading web page from www.purdue.edu:80

→ web server knows client as 128.10.27.10:6001

→ no ambiguity or confusion

→ similarly for 192.168.10.11:33333

NAPT yields huge increase in effective IP address space

→ IP address bits are increased to 48 (= 32 + 16)

→ biggest factor preventing IP address depletion

Technical problems with NAPT?

CS 422 Park

Difficult to run servers behind DHCP intranet:

→ how to discover server’s dynamic IP address?

→ how to discover server’s dynamic port number?

→ NAT traversal problem

Old solution: pay more to ISP to get fixed public IP

address and port number

→ not a good customer solution

→ lots of P2P apps, VoIP, gaming, etc.

CS 422 Park

Two methods:

1. Proxies/relays

→ e.g., Skype: clients contact well-known server—server

knows their dynamic addresses

→ server informs client its peer’s dynamic IP address and

port number

→ peers can talk to each directly

→ also called UDP/TCP hole punching

2. Enhanced gateway capabilities

→ e.g., IGD (Internet Gateway Device) in UPnP

→ IGD compliant router allows user to specify desired

port number

→ not much help with dynamic IP address

→ user communicates desired port number via UPnP

protocol

CS 422 Park

Ex.: SOHO (small office/home office)

−→ now: home networking

NAT & DHCP

DHCP & NAT
����
����
����
����

����
����
����
����

����
����
����
����

ISP

192.168.1.2

192.168.1.3

192.168.1.4

192.168.1.1

192.168.1.5
cable/DSL

dyn−IP

modem gateway

cable/telephone

• dynamic IP address provided by ISP is shared through

NAT

• recall: private IP addresses

→ 10.0.0.0/8, 172.16.0.0–172.31.255.255, 192.168.0.0/16

CS 422 Park

DHCP: 2-phase protocol

1. Discovery

→ client sends broadcast discovery message (UDP, client

port 68, server port 67) on LAN

→ one or more DHCP servers respond with dynamic IP

address

2. Allocation

→ client sends broadcast message requesting selected IP

address

→ DHCP server confirms assignment

DHCP does other network configuration chores:

→ provides DNS server names

→ first-hop router/gateway

→ subnet mask

CS 422 Park

CIDR and dynamically assigned IP addresses with NAPT

→ significant increase of Internet’s effective address space

→ saved the day

But last address block allocated by IANA (suborganiza-

tion of ICANN) to regional registries early 2011

→ RIRs: ARIN, RIPE, APNIC, LACNIC, AFRINIC

→ back to address space crunch?

→ another push for IPv6

→ ISPs and companies reluctant

→ a number of technical and performance issues

→ 40-byte header

→ not backward compatible with IPv4

→ must use separate compatibility mechanisms (e.g., tun-

neling, hybrid sockets)

→ not-so-pleasant history/memories

CS 422 Park

Transport Protocols: TCP and UDP

−→ end-to-end protocol

−→ runs on top of network layer protocols

−→ treat network layer & below as black box

Three-level encapsulation:

TCP/UDPIPMAC Payload (TCP/UDP)

Payload (IP)

Payload (MAC)

MAC TrailerHeaders

−→ meaning of protocol “stack”: push/pop headers

−→ common TCP payload: HTTP

CS 422 Park

Network layer (IP) assumptions:

• unreliable
• out-of-order delivery
• absence of QoS guarantees (delay, throughput, etc.)

• insecure (IPv4)
→ IPsec (native in IPv6)

Additional performance properties:

• works “ok”
• can break down under high load conditions

→ flash crowds

→ DoS and worm attack

• wide behavioral range
→ sometimes good, so so, or bad

→ multitude of causes (e.g., end systems)

CS 422 Park

Goal of UDP (User Datagram Protocol):

−→ process identification

−→ port number as demux key

−→ minimal support beyond IP

Process A

Port X

Process B

Port Y

End System O.S.

UDP

IP

Process A’

Port X’

Process B’

Port Y’

End System O.S.

UDP

IP

Network

CS 422 Park

UDP packet format:

Source Port Destination Port

Length Checksum

Payload

2 2

Checksum calculation (pseudo header):

Source Address

Destination Address

4

UDP LengthProtocol00 0. . .

−→ pseudo header, UDP header and payload

CS 422 Park

UDP usage:

• multimedia streamining

→ lean and nimble

→ at minimum requires process identification

→ congestion control carried out above UDP

• stateless client/server applications
→ persistent state can be a hinderance

→ lightweight

CS 422 Park

Goals of TCP (Transmission Control Protocol):

• process identification
• reliable communication: ARQ

• speedy communication: congestion control

• segmentation

−→ connection-oriented, i.e., stateful

−→ complex mixture of functionalities

CS 422 Park

Segmentation task: provide “stream” interface to higher

level protocols

−→ exported semantics: contiguous byte stream

−→ recall ARQ

• segment stream of bytes into blocks of fixed size

• segment size determined by TCP MTU (Maximum

Transmission Unit)

• actual unit of transmission in ARQ

CS 422 Park

TCP packet format:

Source Port Destination Port

Sequence Number

Acknowledgement Number

Window Size

Urgent Pointer

DATA (if any)

Options (if any)

Checksum

Header
Length

F
I
NN

Y
SR

S
T

P

H
S

A
C
K

U

G
R

2 2

CS 422 Park

• Sequence Number: position of first byte of payload

• Acknowledgement: next byte of data expected (re-

ceiver)

• Header Length (4 bits): 4 B units

• URG: urgent pointer flag
• ACK: ACK packet flag

• PSH: override TCP buffering

• RST: reset connection
• SYN: establish connection

• FIN: close connection
•Window Size: receiver’s advertised window size

• Checksum: prepend pseudo-header

• Urgent Pointer: byte offset in current payload where

urgent data begins

• Options: MTU; take min of sender & receiver (default

556 B)

CS 422 Park

Checksum calculation (pseudo header):

Source Address

Destination Address

4

Protocol00 0. . . TCP Segment Length

−→ pseudo header, TCP header and payload

