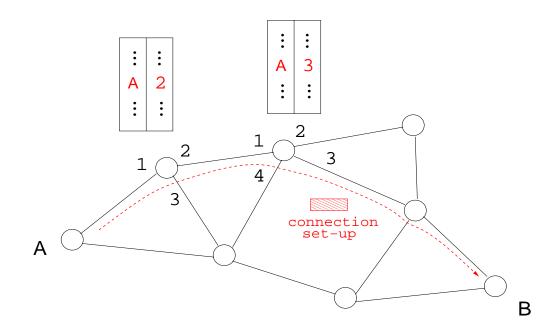
Internetworking and End-to-End Communication

Goal: Interconnect multiple LANs

Why?

- Diverse LANs speak different languages
 - \rightarrow need to make them talk to each other
 - → cannot use native LAN interconnection technology
- Management flexibility


Key problems:

- How to choose paths (routing)?
- How to regulate traffic flow (congestion control)?
 - \rightarrow not too fast, not too slow
- How to provide service quality (QoS control)?

Routing: circuit- vs. packet-switched

- → Internet: packet-switched dominant
- \rightarrow every packet is on its own
- → intranet of large ISPs: circuit- and packet-switched
- → fixed path/circuit is allocated to a group of packets
- \rightarrow ex.: session: file download, VoIP (voice-over-IP), VoD (video-on-demand)
- \rightarrow ex.: all packets from Atlanta to Seattle on an ISP's intranet

Circuit-switched routing: set-up

- connection set-up message: signaling
 - \rightarrow route selection: routing subsystem
 - \rightarrow different from route set-up subsystem
- source tag "A" inserted into route look-up table
 - \rightarrow dynamic look-up table
 - \rightarrow entry deletion upon session termination

Packet-switched routing: set-up

- → no connection set-up signaling
- → each packet: autonomous entity

Source routing:

• packet contains path information

$$\rightarrow \langle A, C, \dots, B \rangle$$

- drawback: header length increases with path length
 - \rightarrow not good for fast packet handling
 - \rightarrow option still available in IP: may be used for management purposes

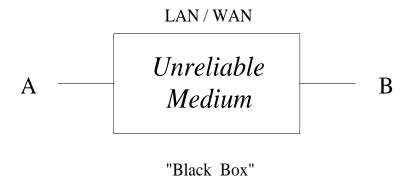
Destination-based forwarding:

- determine output port by destination address
- source address ignored
- \rightarrow same destination, same path
- \rightarrow unless route tables change over time
- \rightarrow e.g., shortest-path routing
- \rightarrow any negative issues stemming from ignoring source address?

Internet Protocol (IP)

Goals:

- interconnect diverse LANs into one logical entity
- implement best-effort service
 - \rightarrow no assurances ("what you get is what you get")
 - \rightarrow simplicity is key


IP represents:

- common language for carrying out non-LAN-specific conversations
 - \rightarrow technical definition of **I**nternet
- functionality and design philosophy
 - \rightarrow simple core / complex edge
 - \rightarrow called end-to-end paradigm

Reliability over best-effort Internet:

• simplifies router design but increases complexity of end stations (e.g., servers, PCs, laptops, handhelds)

- \rightarrow implement ARQ at sender/receiver
- → router does not carry out ARQ at IP layer or above

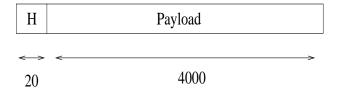
IPv4 packet format:

4	4	8		16	
version	header length	TOS	total length		
f	ragmentati	on identifier	flags	fragment offset	
T	ΓL	protocol	header checksum		
source address					
destination address					
options (if any)					

- Header length: in 4 byte (word) units.
- TOS (type-of-service): Partially used.
- 4 bytes used for fragmentation.
- TTL (time-to-live): Prevent cycling (e.g., 64).
- Protocol: demultiplexing key (TCP 6, UDP 17).

Fragmentation and reassembly:

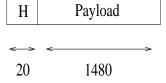
LAN has maximum transmission unit (MTU):


- \rightarrow maximum frame size
- \rightarrow e.g., Ethernet 1500 B, WLAN 2313 B
 - potential size mismatch problem (IP 64 kB)
 - may happen multiple times hopping from LAN to LAN

Solution: fragment IP packet when needed, maintain sequencing information, then reassemble at destination.

- assign unique fragmentation ID
- set 3rd flag bit if fragmentation in progress
- sequence fragments using offset in units of 8 bytes

Example: IP fragmentation (Ethernet MTU)


IP datagram (original)

fragment 1

Н	Payload		
←→	←		→
20		1480	

fragment 2

fragment 3

Н	Payload
←→	←
20	1040

fragment ID: 900

flag bit (3rd): 1

fragment offset: 0

fragment ID: 900

flag bit (3rd): 1

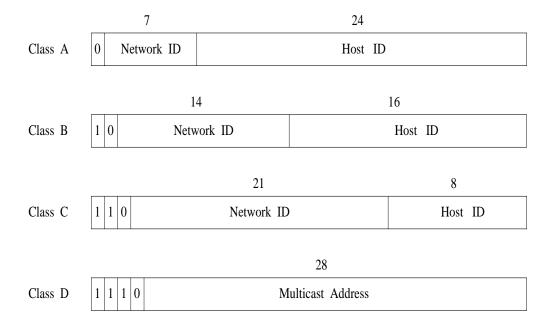
fragment offset: 185

fragment ID: 900

flag bit (3rd): 0

fragment offset: 370

Note: Each fragment is an independent IP packet.


Destination discards all fragments of an IP packet if one is lost.

- \longrightarrow "all for one, one for all"
- → set 2nd flag bit to disable fragmentation

TCP: Negotiate at start-up TCP segment (packet) size based on MTU

→ tries to prevent fragmentation

IP address format:

Dotted decimal notation: 10000000 00001011 00000011 00011111 \leftrightarrow 128.11.3.31

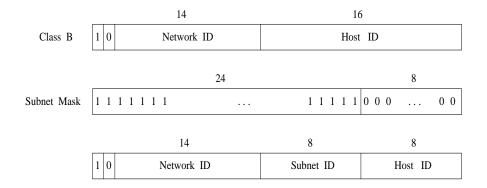
Symbolic name to IP address translation: domain name server (DNS).

Hierarchical organization: 2-level

 \rightarrow network and host

Each interface (NIC) has an IP address; single host can have multiple IP addresses.

 \rightarrow single-homed vs. multi-homed


Running out of IP addresses . . . or not?

- \rightarrow note: IANA gave out last block to regional registries
- \rightarrow should Purdue get a class B address?
- \rightarrow how about your start-up company?
- \rightarrow what about Purdue's Biology Dept.?
- \rightarrow what about the Math Dept.?

Waste of address space:

- → typical organization: network of networks
- \longrightarrow not too many hosts (class B: 64K)

Solution: subnetting—subdivide host ID into subnetwork ID and host ID

To determine subnet ID:

- AND IP address and subnet mask
 - \rightarrow already know if class A, B, C, or D
- 3-level hierarchy

Forwarding and address resolution:

Subnet ID	Subnet Mask	Next Hop
128.10.2.0	255.255.255.0	Interface 0
128.10.3.0	255.255.255.0	Interface 1
128.10.4.0	255.255.255.0	128.10.4.250

Either destination host is connected on a shared LAN, or not (additional IP hop needed).

- \longrightarrow reachable by LAN address forwarding
- → if not, network address (IP) forwarding

Table look-up I ("where to"):

• For each entry, compute SubnetID = DestAddr AND SubnetMask.

- Compare SubnetID with SubnetID.
- Take forwarding action (LAN or IP).

Remaining task: translate destination or next hop IP address into LAN address

- \longrightarrow must be done in either case
- \longrightarrow address resolution protocol (ARP)

Table look-up II ("what's your LAN name"):

• If ARP table contains entry, using LAN address link layer can take over forwarding task.

- \rightarrow ultimately everything is LAN
- \rightarrow network layer: virtual
- If ARP table does not contain entry, broadcast ARP Request packet with destination IP address.
 - \rightarrow e.g., Ethernet broadcast address (all 1's)
- Upon receiving ARP response, update ARP table.

Dynamically maintain ARP table: use timer for each entry (15 min) to invalidate entries.

→ aging (standard caching technique)

Subnetting only goes so far.

 \longrightarrow depts. within Purdue share same class B address

→ what about your start-up company?

 \longrightarrow only 2^{21} class C addresses available

Other approaches to solve address depletion problem:

• IPv6

- \rightarrow 128-bit addresses
- \rightarrow who wants it (or doesn't want it)?
- \rightarrow not used much: will it change?
- Classless (vs. classful) IP addressing
- \rightarrow variable length subnetting
- \rightarrow that is, a.b.c.d/x (x: mask length)
- \rightarrow e.g., 128.10.0.0/16, 128.210.0.0/16, 204.52.32.0/20
- \rightarrow used in inter-domain routing
- \rightarrow CIDR (classless inter-domain routing)
- \rightarrow de facto global Internet addressing standard