Basic TCP data transfer:
TCP’s sliding window protocol

- sender, receiver maintain buffers MaxSendBuffer, MaxRcvBuffer
Note asynchrony between TCP module and application.

Sender side: maintain invariants

- \(\text{LastByteAcked} \leq \text{LastByteSent} \leq \text{LastByteWritten} \)
- \(\text{LastByteWritten} - \text{LastByteAcked} < \text{MaxSendBuffer} \)

\[\rightarrow \text{ buffer flushing (advance window)} \]
\[\rightarrow \text{ application blocking} \]

- \(\text{LastByteSent} - \text{LastByteAcked} \leq \text{AdvertisedWindow} \)

Thus,

\[
\text{EffectiveWindow} = \text{AdvertisedWindow} - (\text{LastByteSent} - \text{LastByteAcked})
\]

\[\rightarrow \text{ upper bound on new send volume} \]
Actually, one additional refinement:

\[
\rightarrow \text{CongestionWindow}
\]

\textbf{EffectiveWindow} update procedure:

\[
\text{EffectiveWindow} = \text{MaxWindow} - (\text{LastByteSent} - \text{LastByteAcked})
\]

where

\[
\text{MaxWindow} = \min \{ \text{AdvertisedWindow, CongestionWindow} \}
\]

How to set \textbf{CongestionWindow}.

\[
\rightarrow \text{domain of TCP congestion control}
\]
Receiver side: maintain invariants

- \(\text{LastByteRead} < \text{NextByteExpected} \leq \text{LastByteRcvd} + 1 \)

- \(\text{LastByteRcvd} - \text{NextByteRead} < \text{MaxRcvBuffer} \)
 \[\rightarrow \text{buffer flushing (advance window)} \]
 \[\rightarrow \text{application blocking} \]

Thus,

\[\text{AdvertisedWindow} = \text{MaxRcvBuffer} - (\text{LastByteRcvd} - \text{LastByteRead}) \]
Issues:

How to let sender know of change in receiver window size after $AdvertisedWindow$ becomes 0?

- trigger ACK event on receiver side when $AdvertisedWindow$ becomes positive
- sender periodically sends 1-byte probing packet

\rightarrow design choice: smart sender/dumb receiver

\rightarrow same situation for congestion control
Silly window syndrome: Assuming receiver buffer is full, what if application reads one byte at a time with long pauses?

- can cause excessive 1-byte traffic
- if $\text{AdvertisedWindow} < \text{MSS}$ then set $\text{AdvertisedWindow} \leftarrow 0$
Do not want to send too many 1 B payload packets.

Nagle’s algorithm:

• rule: connection can have only one such unacknowledged packet outstanding

• while waiting for ACK, incoming bytes are accumulated (i.e., buffered)

... compromise between real-time constraints and efficiency.

→ useful for telnet-type applications
Sequence number wrap-around problem: recall sufficient condition

\[
\text{SenderWindowSize} < \frac{(\text{MaxSeqNum} + 1)}{2}
\]

\[\rightarrow \quad \text{32-bit sequence space/16-bit window space} \]

However, more importantly, time until wrap-around important due to possibility of roaming packets.

<table>
<thead>
<tr>
<th>bandwidth</th>
<th>time until wrap-around †</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 (1.5 Mbps)</td>
<td>6.4 hrs</td>
</tr>
<tr>
<td>Ethernet (10 Mbps)</td>
<td>57 min</td>
</tr>
<tr>
<td>T3 (45 Mbps)</td>
<td>13 min</td>
</tr>
<tr>
<td>F/E (100 Mbps)</td>
<td>6 min</td>
</tr>
<tr>
<td>OC-3 (155 Mbps)</td>
<td>4 min</td>
</tr>
<tr>
<td>OC-12 (622 Mbps)</td>
<td>55 sec</td>
</tr>
<tr>
<td>OC-24 (1.2 Gbps)</td>
<td>28 sec</td>
</tr>
</tbody>
</table>
Even more importantly, “keeping-the-pipe-full” consideration.

<table>
<thead>
<tr>
<th>bandwidth</th>
<th>delay-bandwidth product †</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 (1.5 Mbps)</td>
<td>18 kB</td>
</tr>
<tr>
<td>Ethernet (10 Mbps)</td>
<td>122 kB</td>
</tr>
<tr>
<td>T3 (45 Mbps)</td>
<td>549 kB</td>
</tr>
<tr>
<td>FDDI (100 Mbps)</td>
<td>1.2 MB</td>
</tr>
<tr>
<td>OC-3 (155 Mbps)</td>
<td>1.8 MB</td>
</tr>
<tr>
<td>OC-12 (622 Mbps)</td>
<td>7.4 MB</td>
</tr>
<tr>
<td>OC-24 (1.2 Gbps)</td>
<td>14.8 MB</td>
</tr>
</tbody>
</table>

→ 100 ms latency

Also, throughput limitation imposed by TCP receiver window size.

→ e.g., high-performance grid apps
RTT estimation

... important to not underestimate nor overestimate.

Karn/Partridge: Maintain running average with precautions

\[
\text{EstimateRTT} \leftarrow \alpha \cdot \text{EstimateRTT} + \beta \cdot \text{SampleRTT}
\]

- \text{SampleRTT} computed by sender using timer
- \(\alpha + \beta = 1; \ 0.8 \leq \alpha \leq 0.9, \ 0.1 \leq \beta \leq 0.2 \)
- \text{TimeOut} \leftarrow 2 \cdot \text{EstimateRTT} \quad \text{or} \quad \text{TimeOut} \leftarrow 2 \cdot \text{TimeOut} \quad \text{(if retransmit)}

\rightarrow \text{need to be careful when taking SampleRTT}

\rightarrow \text{infusion of complexity}

\rightarrow \text{still remaining problems}
Hypothetical RTT distribution:

\[\text{# Samples vs. RTT}\]

\[\text{# Samples vs. RTT}\]

\[\rightarrow \text{ need to account for variance}\]

\[\rightarrow \text{ not nearly as nice}\]
Jacobson/Karels:

- \textbf{Difference} = \text{SampleRTT} - \text{EstimatedRTT}
- \textbf{EstimatedRTT} = \text{EstimatedRTT} + \delta \cdot \text{Difference}
- \textbf{Deviation} = \text{Deviation} + \delta(|\text{Difference}| - \text{Deviation})

Here $0 < \delta < 1$.

Finally,

- \textbf{TimeOut} = \mu \cdot \text{EstimatedRTT} + \phi \cdot \text{Deviation}

where $\mu = 1$, $\phi = 4$.

\[\rightarrow\] persistence timer

\[\rightarrow\] how to keep multiple timers in UNIX