
CS 422 Park

Framing

Asynchronous : e.g., ASCII character transmission be-

tween dumb terminal and host computer.

1 0

stop bit start bit

• each character is an independent unit

→ “asynchronous”

• receiver needs to know bit duration

→ bit rate assumed known between sender/receiver

→ in that sense, “synchronous”

CS 422 Park

Overhead problem; assuming 1 start bit, 1 stop bit, 8

data bits, only 80% efficiency.

−→ inefficient for long messages

CS 422 Park

Synchronous : “Byte-oriented”; e.g., PPP, BISYNC

SYN Header BodySYN SOH STX ETX CRC

−→ SYN, SOH, STX, ETX, DLE: sentinels

Two problems:

• How to maintain synchronization if |Body| is large?

• Control characters within body of message.

−→ inefficient for short messages

−→ efficiency approaches 1 as |Body| → ∞

CS 422 Park

“Bit-oriented”; e.g., HDLC

−→ bit is the unit

Use fixed preamble and postamble; simply a bit pattern.

−→ 01111110

How to avoid confusing 01111110 in the data part?

−→ bit stuffing

CS 422 Park

SONET (Synchronous Optical Network)

−→ framing standard for optical fiber

Rates: OC-1 (51.84 Mbps), OC-3 (155.25 Mbps), OC-3c,

OC-12 (622.08 Mbps), OC-24 (1.24416 Gbps), OC-48,

etc.

−→ formally: STS-n

OC-1 frame:

90 B

9 B

3 B 53 B ATM cell

CS 422 Park

Features:

• 125 µsec frame duration (for all OC-n)

• 51.84 Mbps = 810 · 8 · 8000

• 3 + 1 columns of overhead

• overhead includes synchronization, pointer fields

• overhead encoded using NRZ

• payload scrambled (XOR’ed) to achieve approximate

self-clocking

CS 422 Park

Error-detection and correction

−→ reliable transmission over noisy channel

Key problem:

• sender wishes to send a; transmits code word wa

• receiver receives w

• due to noise, w may, or may not, be equal to wa

−→ a 7→ wa 7→ w 7→ [?]

CS 422 Park

Error detection:

• determine if w is a valid code word

• e.g., parity bit in ASCII transmission

→ odd or even parity

→ limitation?

Error correction:

• even if w 6= wa, recover symbol a from scrambled w

→ correction is tougher than detection

• how to correct single errors for ASCII transmission?

→ assume one can use 21 bits

→ what about 14 bits?

CS 422 Park

Conceptual approach:

Error detection:

• consider legal code word set S = {wa : a ∈ Σ}
→ take binary alphabet Σ = {0, 1}

• can detect k-bit errors if

→ corrupted w does not belong to S

→ must hold for all k-bit error patterns

Key question: what kind of S can satisfy these properties

−→ ASCII with 1-bit flip

−→ ASCII with 2-bit flips

−→ brute force approach . . .

CS 422 Park

Error correction:

• assume wa has turned into w under k-bit errors

• for all b ∈ Σ, calculate d(wb, w)

→ Hamming distance; e.g., d(1011, 1101) = 2

• pick c ∈ Σ with smallest d(wc, w) as answer

Ex.: 0 7→ 000 and 1 7→ 111

−→ want to send 0, hence send 000

−→ 010 arrives: d(010, 000) = 1 & d(010, 111) = 2

−→ conclude 000 was sent which means 0

CS 422 Park

Pictorially: consider “ball” of distance r centered at wa

−→ Br(wa) = {w : d(wa, w) ≤ r}

Consider code word set S with “well-separated” layout:

Assuming k bit flips, sufficient conditions for error detec-

tion and error correction in terms of d(wa, wb)?

CS 422 Park

Network protocol context: different approach to detection

vs. correction

−→ error detection: use checksum and CRC codes

−→ error correction: use retransmission

−→ humans?

−→ can also use FEC; for real-time data

Internet Checksum: Group message into 16-bit words;

calculate their sum in one’s complement; append “check-

sum” to message.

−→ problem?

