
CS 422 Park

Code Division Multiplexing

Direct sequence:

1) To send bit sequence x = x1x2 . . . xn, use pseudoran-

dom bit sequence y = y1y2 . . . yn to compute

z = z1z2 . . . zn

= (x1 ⊕ y1)(x2 ⊕ y2) . . . (xn ⊕ yn)

2) Transmit z

3) To decode bit sequence z = z1z2 . . . zn, compute

x = z ⊕ y

Ex.: x = 10010, y = 01011

−→ z = x ⊕ y = 10010 ⊕ 01011 = 11001

−→ z ⊕ y = 11001 ⊕ 01011 = 10010

CS 422 Park

Pseudo-random y is called chipping code or pseudo-noise

(PN) sequence.

In practice, single data bit encoded using r > 1 code bits.

Ex.: Suppose r = 3. To send single bit, say x = 1,

“expand” x to x̃ = 111 (r-fold duplication). If y = 010

then:

−→ z = x̃ ⊕ y = 111 ⊕ 010 = 101

−→ z ⊕ y = 101 ⊕ 010 = 111

−→ what next?

−→ why use r-fold duplication?

Data rate usually slower than code rate

→ |y| = r · |x|
→ more frequent changes: “spreading”

CS 422 Park

Previous scheme works for single user

−→ DSSS (direct sequence spread spectrum)

−→ networking: support multiple users

−→ how to do it?

Suppose N users, each sending a single bit: x1, x2, . . . , xN .

Assume code rate r.

−→ user i’s expanded vector: x̃i = (xi, xi, xi)

Supposing N random chipping codes (one per user)

{y1, y2, . . . , yN}
will the encoding

z = x̃1 ⊕ y1 + x̃2 ⊕ y2 + · · · + x̃N ⊕ yN

work if user i decodes by EXOR’ing z with yi ?

−→ i.e., what is z ⊕ yi ?

−→ does it equal x̃i ?

CS 422 Park

A different twist:

• represent bits as 1,−1 (not 1, 0)

→ xi ∈ {1,−1}
• assume chipping codes {y1, y2, . . . , yN} are orthonor-

mal

→ i.e., yi ◦ yj = 0 (i 6= j) and yi ◦ yi = 1

→ “◦” is the dot product

Encoding (combined signal):

z = x1y1 + x2y2 + · · · + xNyN

−→ note: xi is a scalar, yi is a vector

Decoding (for user i):

yi ◦ z = x1yi ◦ y1 + · · · + xiyi ◦ yi + · · · + xNyi ◦ yN

= xi

−→ exact recovery

−→ CDMA (code division multiple access)

CS 422 Park

Ex.: N = 4, r = 4, and chipping code yi’s are

(1, 1, 1, 1), (−1,−1, 1, 1), (−1, 1,−1, 1), (−1, 1, 1,−1)

−→ note: orthogonal but not orthonormal

−→ yi ◦ yi = 4 (= r)

−→ hence, yi ◦ z = 4 xi

−→ r is also called “gain”

−→ why useful?

CS 422 Park

Frequency hopping:

Use pseudorandom number sequence as key to index a set

of carrier frequencies f1, f2, . . . , fm.

−→ frequency spreading

Receiver with access to pseudorandom sequence can de-

code transmitted signal.

−→ receiver’s tuner must jump around

−→ code narrowband input as broadband output

−→ frequency spreading

−→ FHSS (frequency hopping spread spectrum)

DSSS vs. FHSS?

CS 422 Park

Benefits of CDMA:

• more secure against eavesdropping

→ confidentiality

• resistant to jamming

→ must jam a wider spectrum: more difficult

→ first introduced in the military context

• noise resistance

→ code rate r

• graceful degradation

→ compared to TDM

CS 422 Park

Deployment and usage:

−→ wireless LAN (WLAN): DSSS and FHSS

−→ cellular (e.g., Sprint PCS, Verizon): CDMA

Competing with CDMA cellular: the rest!

−→ majority

−→ AT&T Wireless, Cingular, etc.

−→ dominant standard: GSM

−→ uses TDMA (time division multiple access)

−→ TDMA: FDM + TDM

CS 422 Park

Framing

−→ packet layout

−→ variety of framing conventions

Asynchronous : e.g., ASCII character transmission be-

tween dumb terminal and host computer.

1 0

stop bit start bit

• each character is an independent unit

→ “asynchronous”

• receiver needs to know bit duration

→ bit rate assumed known between sender/receiver

CS 422 Park

Overhead problem; assuming 1 start bit, 1 stop bit, 8

data bits, only 80% efficiency.

−→ inefficient for long messages

iPod & radio example:

−→ coding used asynchronous?

−→ clock needed?

CS 422 Park

Synchronous : “Byte-oriented”; e.g., PPP, BISYNC

SYN Header BodySYN SOH STX ETX CRC

−→ SYN, SOH, STX, ETX, DLE: sentinels

−→ variable body size

Two problems:

• How to maintain synchronization if |Body| is large?

• Control characters within body of message.

−→ inefficient for short messages

−→ efficiency approaches 1 as |Body| → ∞

CS 422 Park

“Bit-oriented”; e.g., HDLC

−→ bit is the unit

Use fixed preamble and postamble; simply a bit pattern.

−→ 01111110

How to avoid confusing 01111110 in the data part?

−→ bit stuffing

−→ for data: stuff 0 after 5 consecutive 1’s

