Shannon showed that there is a fundamental limitation to reliable data transmission.

- ther wider the bandwidth (Hz) the higher the reliable throughput
- the noisier the channel, the smaller the reliable throughput
 - \rightarrow overhead spent dealing with corrupted bits

Channel Coding Theorem (Shannon): Given bandwidth W, signal power P_S , noise power P_N , channel subject to white noise,

$$C = W \log \left(1 + \frac{P_S}{P_N}\right)$$
 bps.

 $\rightarrow P_S/P_N$: signal-to-noise ratio (SNR)

- Increase bandwidth W (Hz) to proportionally increase reliable throughput
 - \rightarrow e.g., FDM, OFDM
 - \rightarrow best possible way
 - \rightarrow wireless bandwidth: scarce resource
- Power control (e.g., handheld wireless devices)
 - \rightarrow trade-off w.r.t. battery power
 - \rightarrow trade-off w.r.t. multi-user interference: doesn't work if everyone increases power
 - \rightarrow signal-to-interference ratio (SIR)

Signal-to-noise ratio (SNR) is expressed as $dB = 10 \log_{10}(P_S/P_N).$

Ex.: Assuming a decibel level of 30, what is the channel capacity of a telephone line?

First, W = 3000 Hz, $P_S/P_N = 1000$. Using Channel Coding Theorem,

 $C = 3000 \log 1001 \approx 30$ Kbps.

 \longrightarrow compare against 28.8 Kbps modems

- \longrightarrow what about 56 Kbps modems?
- \longrightarrow xDSL lines?

- \rightarrow modern communication: mainly for digitizing analog audio (music and voice)
- \rightarrow key issue: digitizing time
- \rightarrow digitizing amplitude: less critical due to log-response of auditory system

Sampling Theorem (Nyquist): Given continuous bandlimited signal s(t) with bandwidth W (Hz), s(t) can be reconstructed from its samples if

$$\nu > 2W$$

where ν is the sampling rate.

 $\longrightarrow \nu$: samples per second

- \rightarrow sensitivity: 20 Hz–20 KHz range (roughly 20 KHz)
- \rightarrow voice: 300 Hz–3.3 KHz (roughly 4 KHz)
- T1 TDM line: 1.544 Mbps
- \rightarrow frame size 193 (24 users, 8 bits-per-user, 1 preamble bit)
- $\rightarrow 8000$ samples per second
- $\rightarrow 193 \times 8000 = 1.544$ Mbps
- CD quality audio: 44100 samples per second
- \rightarrow also denoted Hz (44.1 KHz)
- DVD quality audio: 96 samples per second (and higher)