A global ("big picture") view of carrier separation in FDM with AM



- $\rightarrow$  hence  $z_1(t) = x_1(t) \times y_1(t)$
- $\rightarrow$  what is the Fourier transform of sinusoid  $y_1(t)$  of frequency  $f_1$ ?
- $\rightarrow$  what is the Fourier transform of amplitudes  $x_1(t)$ ?

 $\rightarrow F_{x_1}(f)$  gives the weight of sinusoid with frequency f

Useful fact:

The Fourier transform of  $x_1(t) \times y_1(t)$  is just  $F_{x_1}(f)$ shifted by  $f_1$ 

 $\rightarrow F_{x_1}(f-f_1)$ 

 $\rightarrow$  modulation theorem

Example: Suppose  $x_1(t)$  is the sinc function



Then Fourier transform of  $x_1(t) \times y_1(t)$  is



Suppose  $y_2(t)$  is sinusoid of frequency  $f_2$  and  $x_2(t)$  is the amplitude signal

 $\rightarrow$  same for  $y_3(t)$  and  $x_3(t)$ 

If both  $x_2(t)$  and  $x_3(t)$  are sinc functions (same as  $x_1(t)$ ) then the Fourier transform of all three is



 $\rightarrow$  no inter-carrier interference for sufficiently large carrier separation

 $\rightarrow$  i.e.,  $f_2 - f_1 > B$  and  $f_3 - f_2 > B$ 

where B is the bandwidth of  $x_1(t)$ ,  $x_2(t)$ ,  $x_3(t)$ 

Of course, Fourier transform of  $x_1(t)$ 



won't be simple square function and not even bandlimited  $\rightarrow$  how to deal with it?

For example: If  $x_1(t)$  is square wave and its Fourier transform  $F_{x_1}(f)$  a sync function



then treat  $x_1(t)$  as bandlimited by ignoring frequencies greater than a cut-off threshold B

- $\rightarrow$  then apply carrier frequency separation at least B plus guardband
- $\rightarrow$  note: there is ICI (ignoring doesn't make it go away)
- $\rightarrow$  goal: ICI at the level of minor noise
- $\rightarrow$  bits decoded successfully with high likelihood

Modern approach to packing more carrier frequencies within a given frequency band

 $\rightarrow$  orthogonal FDM

Conceptual similarity to linear algebra

3-D space: Given two vectors  $x = (x_1, x_2, x_3)$  and  $y = (y_1, y_2, y_3)$ , they are orthogonal—i.e., perpendicular to each other—if, and only if,

$$x \circ y = x_1 y_1 + x_2 y_2 + x_3 y_3 = 0$$

 $\rightarrow$  called dot product (or inner product)

- $\rightarrow$  3-D: (1,0,0), (0,1,0), (0,0,1) are orthogonal
- $\rightarrow$  also basis of 3-D
- $\rightarrow$  called orthonormal if dot product with itself is 1

Lots of other orthogonal basis vectors

For example: (5, 2, 0), (2, -5, 0), (0, 0, 1) are mutually orthogonal

- $\rightarrow$  but not orthonormal
- $\rightarrow$  how to make them orthonormal?

Relevance to networking:

In CDMA (code division multiple access)—for example, used by Sprint and Verizon for wireless cellular in the U.S.—(5,2,0), (2,-5,0), (0,0,1) are called codes

 $\rightarrow$  one code per user

 $\rightarrow$  3-D codes: 3 users (say Bob, Mira, Steve)

Suppose each user wants to send a single bit

 $\rightarrow$  Bob: 1, Mira: 0, Steve: 0

Bob's cell phone: send  $1 \times (5, 2, 0)$  to base station (cell tower)

Mira's cell phone: send  $-1 \times (2, -5, 0)$  to base station

Steve's cell phone: send  $-1 \times (0, 0, 1)$ 

 $\rightarrow$  common convention: 1 for bit 1, -1 for bit 0

Base station receives: (3, 7, -1)

 $\to (1 \times (5, 2, 0)) + (-1 \times (2, -5, 0)) + (-1 \times (0, 0, 1))$ 

How can base station find what bit Bob has sent?

Base station: compute the dot product of what it has received, (3, 7, -1), and the code of Bob, (5, 2, 0)

$$\rightarrow (5, 2, 0) \circ (3, 7, -1) = 15 + 14 + 0 = 29$$

- $\rightarrow$  positive: hence bit 1
- $\rightarrow$  what's special about 29?

To find out what Mira has sent:

$$\rightarrow (2, -5, 0) \circ (3, 7, -1) = 6 - 35 + 0 = -29$$

 $\rightarrow$  negative: hence bit 0

To find out what Steve has sent:

$$\rightarrow (0,0,1) \circ (3,7,-1) = 0 + 0 + 1 = -1$$

- $\rightarrow$  negative: hence bit 0
- $\rightarrow$  why does this work?

Base station decoding Bob's bit:  $(5, 2, 0) \circ (3, 7, -1)$ 

Since  $(3, 7, -1) = (1 \times (5, 2, 0)) + (-1 \times (2, -5, 0)) + (-1 \times (0, 0, 1))$ 

 $(5,2,0) \circ (3,7,-1) \text{ equals}$  $(1 \times (5,2,0) \circ (5,2,0)) + (-1 \times (5,2,0) \circ (2,-5,0))$  $+ (-1 \times (5,2,0) \circ (0,0,1))$ 

which equals  $(1 \times (5, 2, 0) \circ (5, 2, 0))$ 

 $\rightarrow$  the two interference terms are nullified  $\rightarrow$  orthogonality!

Same holds when computing Mira's bit and Steve's bit  $\rightarrow$  CDMA has additional twists (discussed in wireless)  $\rightarrow$  but the above is essential idea

## Back to orthogonal FDM (OFDM)

 $\rightarrow$  key idea: use carrier waves that are orthogonal

Dot product of two vectors  $x = (x_1, \ldots, x_n)$  and  $y = (y_1, \ldots, y_n)$ 

$$x \circ y = \sum_{i=1}^{n} x_i y_i$$

"Dot product" of two sinusoids  $x(t) = \sin f_x t$  and  $y(t) = \sin f_y t$ 

$$x(t) \circ y(t) = \int_{-\infty}^{\infty} (\sin f_x t) (\sin f_y t) dt$$

 $\rightarrow$  again: just a sum of products

More generally:  $x(t) \circ y(t) = \int_{-\infty}^{\infty} e^{if_x t} e^{-if_y t} dt$ 

 $\rightarrow$  since Fourier transform involves complex sinusoids

User 1 uses carrier wave  $y_1(t)$  to transmit bit stream (high and low) given by  $x_1(t)$ 



Same for users 2 and 3

Suppose carrier waves  $y_1(t)$ ,  $y_2(t)$ ,  $y_3(t)$  are orthogonal

Then receiver sees  $z_1(t) + z_2(t) + z_3(t)$  which is

$$\sum_{k=1}^{3} x_k(t) y_k(t)$$

To decode what user 1 has sent, receiver computes dot product with  $y_1(t)$ 

$$y_{1}(t) \circ \left(\sum_{k=1}^{3} x_{k}(t)y_{k}(t)\right) = \sum_{k=1}^{3} x_{k}(t)(y_{1}(t) \circ y_{k}(t))$$
  
=  $x_{1}(t)(y_{1}(t) \circ y_{1}(t))$   
=  $x_{1}(t)$ 

 $\rightarrow$  last steps holds if also orthonormal

But look at Fourier transform formula (lecture notes, part 2):

 $\rightarrow$  just taking dot product!

## OFDM's advantage over FDM:

 $\rightarrow$  don't need to worry about spectra of  $x_1(t), x_2(t), x_3(t)$ 

FDM:



OFDM:



 $\rightarrow$  spectra allowed to overlap

Can pack more carrier frequencies within given frequency band

 $\rightarrow$  called spectral efficiency

Technique known since the mid-1960s

- $\rightarrow$  only recently practically feasible
- $\rightarrow$  discrete Fourier transform (DFT)
- $\rightarrow$  implementation issue

Suppose usable frequency band is from  $f_a$  (Hz) to  $f_b$  (Hz) Frequency band:  $W = f_b - f_a$  $\rightarrow$  ex.:  $f_a = 2.4$  GHz and  $f_b = 2.5$  GHz, W = 100 MHz

To support N users or parallel bit streams set  $\rightarrow$  carrier spacing:  $\bar{f} = W/N$ 

Then N carrier waves—called sub-carriers—are  $\rightarrow f_a, f_a + \overline{f}, f_a + 2\overline{f}, \dots, f_a + (N-1)\overline{f}$ 

Easy to check they are orthogonal

 $\rightarrow$  take dot product

Since this works for any N, does it mean we can support arbitrarily many parallel streams? straints

Not quite: physics of signal propagation imposes con-

 $\rightarrow$  wireless: symbol period  $\tau$  cannot be too short

- $\rightarrow$  multi-path propagation
- $\rightarrow$  leads to ISI (inter-symbol interference)
- $\rightarrow$  different from ICI (inter-carrier interference)

Symbol period (or time) determines carrier spacing  $\bar{f}$  $\rightarrow \bar{f} = 1/\tau$ 

Thus: total number of sub-carriers N

 $\rightarrow N = W/\bar{f}$ 

Example:  $\tau = 3.2 \ \mu s$  in IEEE 802.11g WLANs  $\rightarrow \bar{f} = 1/\tau = 312.5 \text{ kHz}$  $\rightarrow W = 20 \text{ MHz}, N = W/\bar{f} = 64$  Wireline: frequency spacing influenced by noise factors

$$\rightarrow$$
 e.g., ADSL:  $\bar{f} = 4.3125$  kHz

- $\rightarrow$  ITU G.992.1 standard
- $\rightarrow$  copper wire: UTP (unshielded twisted pair)
- $\rightarrow$  frequency band: 0–1.104 MHz

$$\rightarrow N = W/\bar{f} = 256$$

Frequency band 0–4 kHz used for voice

 $\rightarrow$  also called POTS (plain old telephone service)

In the not-too-distant past, it was commonly held that UTP copper can support at maximum 30 kbps

 $\rightarrow$  today's speeds: several Mbps range