A global ("big picture") view of carrier separation in FDM with AM

\rightarrow hence $z_{1}(t)=x_{1}(t) \times y_{1}(t)$
\rightarrow what is the Fourier transform of sinusoid $y_{1}(t)$ of frequency f_{1} ?
\rightarrow what is the Fourier transform of amplitudes $x_{1}(t) ?$

Call the Fourier transform of $x_{1}(t), F_{x_{1}}(f)$
$\rightarrow F_{x_{1}}(f)$ gives the weight of sinusoid with frequency f

Useful fact:

The Fourier transform of $x_{1}(t) \times y_{1}(t)$ is just $F_{x_{1}}(f)$ shifted by f_{1}
$\rightarrow F_{x_{1}}\left(f-f_{1}\right)$
\rightarrow modulation theorem

Example: Suppose $x_{1}(t)$ is the sinc function

Then Fourier transform of $x_{1}(t) \times y_{1}(t)$ is

Back to FDM:

Suppose $y_{2}(t)$ is sinusoid of frequency f_{2} and $x_{2}(t)$ is the amplitude signal
\rightarrow same for $y_{3}(t)$ and $x_{3}(t)$

If both $x_{2}(t)$ and $x_{3}(t)$ are sinc functions (same as $\left.x_{1}(t)\right)$ then the Fourier transform of all three is

\rightarrow no inter-carrier interference for sufficiently large carrier separation
\rightarrow i.e., $f_{2}-f_{1}>B$ and $f_{3}-f_{2}>B$
where B is the bandwidth of $x_{1}(t), x_{2}(t), x_{3}(t)$

Of course, Fourier transform of $x_{1}(t)$

won't be simple square function and not even bandlimited
\rightarrow how to deal with it?

For example: If $x_{1}(t)$ is square wave and its Fourier transform $F_{x_{1}}(f)$ a sync function

then treat $x_{1}(t)$ as bandlimited by ignoring frequencies greater than a cut-off threshold B
\rightarrow then apply carrier frequency separation at least B plus guardband
\rightarrow note: there is ICI (ignoring doesn't make it go away)
\rightarrow goal: ICI at the level of minor noise
\rightarrow bits decoded successfully with high likelihood

Modern approach to packing more carrier frequencies within a given frequency band
\rightarrow orthogonal FDM

Conceptual similarity to linear algebra

3-D space: Given two vectors $x=\left(x_{1}, x_{2}, x_{3}\right)$ and $y=$ $\left(y_{1}, y_{2}, y_{3}\right)$, they are orthogonal-i.e., perpendicular to each other-if, and only if,

$$
x \circ y=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}=0
$$

\rightarrow called dot product (or inner product)
$\rightarrow 3$-D: $(1,0,0),(0,1,0),(0,0,1)$ are orthogonal
\rightarrow also basis of 3-D
\rightarrow called orthonormal if dot product with itself is 1

Lots of other orthogonal basis vectors

For example: $(5,2,0),(2,-5,0),(0,0,1)$ are mutually orthogonal
\rightarrow but not orthonormal
\rightarrow how to make them orthonormal?

Relevance to networking:

In CDMA (code division multiple access)-for example, used by Sprint and Verizon for wireless cellular in the U.S.- $(5,2,0),(2,-5,0),(0,0,1)$ are called codes
\rightarrow one code per user
$\rightarrow 3$-D codes: 3 users (say Bob, Mira, Steve)

Suppose each user wants to send a single bit
\rightarrow Bob: 1, Mira: 0, Steve: 0

Bob's cell phone: send $1 \times(5,2,0)$ to base station (cell tower)

Mira's cell phone: send $-1 \times(2,-5,0)$ to base station

Steve's cell phone: send $-1 \times(0,0,1)$
\rightarrow common convention: 1 for bit $1,-1$ for bit 0

Base station receives: $(3,7,-1)$

$$
\rightarrow(1 \times(5,2,0))+(-1 \times(2,-5,0))+(-1 \times(0,0,1))
$$

How can base station find what bit Bob has sent?

Base station: compute the dot product of what it has received, $(3,7,-1)$, and the code of $\operatorname{Bob},(5,2,0)$
$\rightarrow(5,2,0) \circ(3,7,-1)=15+14+0=29$
\rightarrow positive: hence bit 1
\rightarrow what's special about 29 ?

To find out what Mira has sent:
$\rightarrow(2,-5,0) \circ(3,7,-1)=6-35+0=-29$
\rightarrow negative: hence bit 0

To find out what Steve has sent:
$\rightarrow(0,0,1) \circ(3,7,-1)=0+0+1=-1$
\rightarrow negative: hence bit 0
\rightarrow why does this work?

Base station decoding Bob's bit: $(5,2,0) \circ(3,7,-1)$

Since $(3,7,-1)=(1 \times(5,2,0))+(-1 \times(2,-5,0))+$ $(-1 \times(0,0,1))$
$(5,2,0) \circ(3,7,-1)$ equals $(1 \times(5,2,0) \circ(5,2,0))+(-1 \times(5,2,0) \circ(2,-5,0))$
$+(-1 \times(5,2,0) \circ(0,0,1))$
which equals $(1 \times(5,2,0) \circ(5,2,0))$
\rightarrow the two interference terms are nullified
\rightarrow orthogonality!

Same holds when computing Mira's bit and Steve's bit \rightarrow CDMA has additional twists (discussed in wireless)
\rightarrow but the above is essential idea

Back to orthogonal FDM (OFDM)

\rightarrow key idea: use carrier waves that are orthogonal

Dot product of two vectors $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=$ $\left(y_{1}, \ldots, y_{n}\right)$

$$
x \circ y=\sum_{i=1}^{n} x_{i} y_{i}
$$

"Dot product" of two sinusoids $x(t)=\sin f_{x} t$ and $y(t)=$ $\sin f_{y} t$

$$
x(t) \circ y(t)=\int_{-\infty}^{\infty}\left(\sin f_{x} t\right)\left(\sin f_{y} t\right) d t
$$

\rightarrow again: just a sum of products

More generally: $x(t) \circ y(t)=\int_{-\infty}^{\infty} e^{i f_{x} t} e^{-i f_{y} t} d t$
\rightarrow since Fourier transform involves complex sinusoids

User 1 uses carrier wave $y_{1}(t)$ to transmit bit stream (high and low) given by $x_{1}(t)$

Same for users 2 and 3

Suppose carrier waves $y_{1}(t), y_{2}(t), y_{3}(t)$ are orthogonal

Then receiver sees $z_{1}(t)+z_{2}(t)+z_{3}(t)$ which is

$$
\sum_{k=1}^{3} x_{k}(t) y_{k}(t)
$$

To decode what user 1 has sent, receiver computes dot product with $y_{1}(t)$

$$
\begin{aligned}
y_{1}(t) \circ\left(\sum_{k=1}^{3} x_{k}(t) y_{k}(t)\right) & =\sum_{k=1}^{3} x_{k}(t)\left(y_{1}(t) \circ y_{k}(t)\right) \\
& =x_{1}(t)\left(y_{1}(t) \circ y_{1}(t)\right) \\
& =x_{1}(t)
\end{aligned}
$$

\rightarrow last steps holds if also orthonormal

But look at Fourier transform formula (lecture notes, part 2):
\rightarrow just taking dot product!

OFDM's advantage over FDM:
\rightarrow don't need to worry about spectra of $x_{1}(t), x_{2}(t), x_{3}(t)$

FDM:

OFDM:

\rightarrow spectra allowed to overlap

Can pack more carrier frequencies within given frequency band
\rightarrow called spectral efficiency

Technique known since the mid-1960s
\rightarrow only recently practically feasible
\rightarrow discrete Fourier transform (DFT)
\rightarrow implementation issue

Suppose usable frequency band is from $f_{a}(\mathrm{~Hz})$ to $f_{b}(\mathrm{~Hz})$
Frequency band: $W=f_{b}-f_{a}$
\rightarrow ex.: $f_{a}=2.4 \mathrm{GHz}$ and $f_{b}=2.5 \mathrm{GHz}, W=100 \mathrm{MHz}$

To support N users or parallel bit streams set
\rightarrow carrier spacing: $\bar{f}=W / N$

Then N carrier waves - called sub-carriers-are

$$
\rightarrow f_{a}, f_{a}+\bar{f}, f_{a}+2 \bar{f}, \ldots, f_{a}+(N-1) \bar{f}
$$

Easy to check they are orthogonal
\rightarrow take dot product

Since this works for any N, does it mean we can support arbitrarily many parallel streams?

Not quite: physics of signal propagation imposes constraints
\rightarrow wireless: symbol period τ cannot be too short
\rightarrow multi-path propagation
\rightarrow leads to ISI (inter-symbol interference)
\rightarrow different from ICI (inter-carrier interference)

Symbol period (or time) determines carrier spacing \bar{f} $\rightarrow \bar{f}=1 / \tau$

Thus: total number of sub-carriers N

$$
\rightarrow N=W / \bar{f}
$$

Example: $\tau=3.2 \mu \mathrm{~s}$ in IEEE 802.11g WLANs
$\rightarrow \bar{f}=1 / \tau=312.5 \mathrm{kHz}$
$\rightarrow W=20 \mathrm{MHz}, N=W / \bar{f}=64$

Wireline: frequency spacing influenced by noise factors
\rightarrow e.g., ADSL: $\bar{f}=4.3125 \mathrm{kHz}$
\rightarrow ITU G.992.1 standard
\rightarrow copper wire: UTP (unshielded twisted pair)
\rightarrow frequency band: $0-1.104 \mathrm{MHz}$
$\rightarrow N=W / \bar{f}=256$

Frequency band $0-4 \mathrm{kHz}$ used for voice
\rightarrow also called POTS (plain old telephone service)

In the not-too-distant past, it was commonly held that UTP copper can support at maximum 30 kbps
\rightarrow today's speeds: several Mbps range

