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A global (“big picture”) view of carrier separation in

FDM with AM
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— hence z1(t) = z1(t) x y1(t)

— what is the Fourier transform of sinusoid w;(t) of fre-
quency f17

— what is the Fourier transform of amplitudes x1(t)?
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Call the Fourier transform of x(t), 3, (f)

— F, (f) gives the weight of sinusoid with frequency f

Useful fact:

The Fourier transform of () x yi(t) is just £y (f)
shifted by f;

— F$1<f_ fl)

— modulation theorem
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Example: Suppose x1(t) is the sinc function

X(t)

AN

(0]

R (f)

Then Fourier transform of x(t) X yy(t) is

i (f—f1)
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Back to FDM:

Suppose ys(t) is sinusoid of frequency fy and xo(t) is the
amplitude signal

— same for y3(t) and x3(t)

If both xo(t) and x3(t) are sinc functions (same as x1(t))
then the Fourier transform of all three is

— no inter-carrier interference for sufficiently large car-

rier separation

—>i.e.,f2—f1>Bandf3—f2>B

where B is the bandwidth of z1(t), xo(t), x3(t)
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Of course, Fourier transform of ()
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o
IKNAK
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won't be simple square function and not even bandlimited

— how to deal with it?
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For example: If x1(t) is square wave and its Fourier trans-
form F,,(f) a sync function

(0]

| A NN

(0]

then treat x1(t) as bandlimited by ignoring frequencies
ereater than a cut-off threshold B

— then apply carrier frequency separation at least B plus
oguardband

— note: there is ICI (ignoring doesn’t make it go away)
— goal: ICI at the level of minor noise

— bits decoded successtully with high likelihood
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Modern approach to packing more carrier frequencies within
a given frequency band

— orthogonal FDM

Conceptual similarity to linear algebra

3-D space: Given two vectors x = (1, To,x3) and y =
(y1,y2,y3), they are orthogonal—i.e., perpendicular to
each other—if, and only if,

T oY = T1Y1 + T2ys + x3y3 = 0

— called dot product (or inner product)
— 3-D: (1,0,0), (0,1,0), (0,0, 1) are orthogonal
— also basis of 3-D

— called orthonormal if dot product with itself is 1
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Lots of other orthogonal basis vectors

For example: (5,2,0), (2,—=5,0), (0,0,1) are mutually
orthogonal

— but not orthonormal

— how to make them orthonormal?

Relevance to networking:

In CDMA (code division multiple access)—for example,
used by Sprint and Verizon for wireless cellular in the

U.S—(5,2,0), (2,—5,0), (0,0, 1) are called codes
— one code per user

— 3-D codes: 3 users (say Bob, Mira, Steve)
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Suppose each user wants to send a single bit

— Bob: 1, Mira: 0, Steve: 0

Bob’s cell phone: send 1 x (5,2,0) to base station (cell
tower)

Mira’s cell phone: send —1 x (2, —5,0) to base station

Steve’s cell phone: send —1 x (0,0, 1)

— common convention: 1 for bit 1, —1 for bit 0

Base station receives: (3,7, —1)

— (1x(5,2,0)) +(—1x(2,-5,0)) + (—1x(0,0,1))

How can base station find what bit Bob has sent?
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Base station: compute the dot product of what it has
received, (3,7, —1), and the code of Bob, (5,2, 0)

— (5,2,0)0(3,7,—1)=15+14+0=29
— positive: hence bit 1

— what’s special about 297

To find out what Mira has sent:
— (2,=5,0)0(3,7,—-1) =6 —-35+0=—29

— negative: hence bit 0

To find out what Steve has sent:
— (0,0,1) 0 (3,7, —1)=0+0+1=—-1
— negative: hence bit 0

— why does this work?
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Base station decoding Bob’s bit: (5,2,0) o (3,7, —1)

Since (3,7, —1) = (1 x (5,2,0)) + (— 1 x (2,—5,0)) +
(—1x(0,0,1))
(5,2,0) 0 (3,7, —1) equals

(1x(5,2,0)0(5,2,0) + (—1x(52,0)0(2,-5,0))
+ (= 1x(5,2,0)0(0,0,1))

which equals (1 x (5,2,0) o (5,2,0))
— the two interference terms are nullified

— orthogonality!

Same holds when computing Mira’s bit and Steve’s bit
— CDMA has additional twists (discussed in wireless)

— but the above is essential idea
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Back to orthogonal FDM (OFDM)

— key idea: use carrier waves that are orthogonal

Dot product of two vectors x = (x1,...,x,) and y =

(yh"'ayn) "
oy—S
1=1

“Dot product” of two sinusoids x(t) = sin f,t and y(t) =
sin fy,t

©.@)

x(t) oy(t) = /_ (sin f,t) (sin f,t) dt

(0.@)

— again: just a sum of products

More generally: z(t) o y(t) = [~ e'fale™/tdt

oo

— since Fourier transform involves complex sinusoids
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User 1 uses carrier wave y(t) to transmit bit stream (high
and low) given by x(t)

z,(1) /\ A A

X4(t)

Same for users 2 and 3

Suppose carrier waves y1(t), yo(t), ys(t) are orthogonal
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Then receiver sees z1(t) + 29(t) + 23(t) which is
3

Z z(t)yr(t)

k=1

To decode what user 1 has sent, receiver computes dot
product with y(t)
3

yi(t) o (Z ﬂjk(t)yk(t)) _

k=1

E

zi(t) (y1(t) o yi(t))

x5

— a: t) (y1 (t) o1y <t>>

(
1(1)

— last steps holds if also orthonormal

S

But look at Fourier transform formula (lecture notes, part
2):

— just taking dot product!
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OFDM’s advantage over FDM:

— don’t need to worry about spectra of x1(t), xo(t), x3(t)

FDM:
B
0 \ \ \ f
f1l f2 f3
OFDM:
overl ap
./
0 | | | - f
fl f2 f3

— spectra allowed to overlap
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Can pack more carrier frequencies within given frequency

band

— called spectral efficiency

Technique known since the mid-1960s
— only recently practically feasible
— discrete Fourier transform (DFT)

— implementation issue
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Suppose usable frequency band is from f, (Hz) to f;, (Hz)

Frequency band: W = f, — f,

— ex.: f, = 2.4 GHz and f, = 2.5 GHz, W = 100 MHz

To support N users or parallel bit streams set

— carrier spacing: f = W/N

Then N carrier waves——called sub-carriers—are

= fo fat fofa+2f, o fa b (N=1)f

Easy to check they are orthogonal
— take dot product

Since this works for any IV, does it mean we can support
arbitrarily many parallel streams?
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Not quite: physics of signal propagation imposes con-
straints

— wireless: symbol period 7 cannot be too short
— multi-path propagation
— leads to ISI (inter-symbol interference)

— different from ICI (inter-carrier interference)

Symbol period (or time) determines carrier spacing f

— f=1/7

Thus: total number of sub-carriers NV

— N=W/f

Example: 7 = 3.2 us in [EEE 802.11g WLANS
— f=1/7 = 3125 kHz
— W =20 MHz, N = W/f = 64
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Wireline: frequency spacing influenced by noise factors
— e.g., ADSL: f = 4.3125 kHz

— ITU G.992.1 standard

— copper wire: UTP (unshielded twisted pair)

— frequency band: 0-1.104 MHz

— N =W/f =256

Frequency band 0—4 kHz used for voice

— also called POTS (plain old telephone service)

In the not-too-distant past, it was commonly held that
UTP copper can support at maximum 30 kbps

— today’s speeds: several Mbps range



