
CS 422 Park

A global (“big picture”) view of carrier separation in

FDM with AM

0 0 01 1 1

z (t)

y (t)

x (t)

1

1

1

→ hence z1(t) = x1(t)× y1(t)

→ what is the Fourier transform of sinusoid y1(t) of fre-

quency f1?

→ what is the Fourier transform of amplitudes x1(t)?

CS 422 Park

Call the Fourier transform of x1(t), Fx1(f)

→ Fx1(f) gives the weight of sinusoid with frequency f

Useful fact:

The Fourier transform of x1(t) × y1(t) is just Fx1(f)

shifted by f1

→ Fx1(f − f1)

→ modulation theorem

CS 422 Park

Example: Suppose x1(t) is the sinc function

t
0

0
f

x(t)

F (f)x

Then Fourier transform of x1(t)× y1(t) is

xF (f−f1)

0
f

f1

CS 422 Park

Back to FDM:

Suppose y2(t) is sinusoid of frequency f2 and x2(t) is the

amplitude signal

→ same for y3(t) and x3(t)

If both x2(t) and x3(t) are sinc functions (same as x1(t))

then the Fourier transform of all three is

f
f3

0
f1 f2

B

→ no inter-carrier interference for sufficiently large car-

rier separation

→ i.e., f2 − f1 > B and f3 − f2 > B

where B is the bandwidth of x1(t), x2(t), x3(t)

CS 422 Park

Of course, Fourier transform of x1(t)

0 0 01 1 1

z (t)

y (t)

x (t)

1

1

1

won’t be simple square function and not even bandlimited

→ how to deal with it?

CS 422 Park

For example: If x1(t) is square wave and its Fourier trans-

form Fx1(f) a sync function

t
0

0
f

B

then treat x1(t) as bandlimited by ignoring frequencies

greater than a cut-off threshold B

→ then apply carrier frequency separation at leastB plus

guardband

→ note: there is ICI (ignoring doesn’t make it go away)

→ goal: ICI at the level of minor noise

→ bits decoded successfully with high likelihood

CS 422 Park

Modern approach to packing more carrier frequencies within

a given frequency band

→ orthogonal FDM

Conceptual similarity to linear algebra

3-D space: Given two vectors x = (x1, x2, x3) and y =

(y1, y2, y3), they are orthogonal—i.e., perpendicular to

each other—if, and only if,

x ◦ y = x1y1 + x2y2 + x3y3 = 0

→ called dot product (or inner product)

→ 3-D: (1, 0, 0), (0, 1, 0), (0, 0, 1) are orthogonal

→ also basis of 3-D

→ called orthonormal if dot product with itself is 1

CS 422 Park

Lots of other orthogonal basis vectors

For example: (5, 2, 0), (2,−5, 0), (0, 0, 1) are mutually

orthogonal

→ but not orthonormal

→ how to make them orthonormal?

Relevance to networking:

In CDMA (code division multiple access)—for example,

used by Sprint and Verizon for wireless cellular in the

U.S.—(5, 2, 0), (2,−5, 0), (0, 0, 1) are called codes

→ one code per user

→ 3-D codes: 3 users (say Bob, Mira, Steve)

CS 422 Park

Suppose each user wants to send a single bit

→ Bob: 1, Mira: 0, Steve: 0

Bob’s cell phone: send 1 × (5, 2, 0) to base station (cell

tower)

Mira’s cell phone: send −1× (2,−5, 0) to base station

Steve’s cell phone: send −1× (0, 0, 1)

→ common convention: 1 for bit 1, −1 for bit 0

Base station receives: (3, 7,−1)

→ (
1× (5, 2, 0)

)
+
(− 1× (2,−5, 0)

)
+
(− 1× (0, 0, 1)

)

How can base station find what bit Bob has sent?

CS 422 Park

Base station: compute the dot product of what it has

received, (3, 7,−1), and the code of Bob, (5, 2, 0)

→ (5, 2, 0) ◦ (3, 7,−1) = 15 + 14 + 0 = 29

→ positive: hence bit 1

→ what’s special about 29?

To find out what Mira has sent:

→ (2,−5, 0) ◦ (3, 7,−1) = 6− 35 + 0 = −29

→ negative: hence bit 0

To find out what Steve has sent:

→ (0, 0, 1) ◦ (3, 7,−1) = 0 + 0 + 1 = −1

→ negative: hence bit 0

→ why does this work?

CS 422 Park

Base station decoding Bob’s bit: (5, 2, 0) ◦ (3, 7,−1)

Since (3, 7,−1) =
(
1× (5, 2, 0)

)
+
(− 1× (2,−5, 0)

)
+(− 1× (0, 0, 1)

)

(5, 2, 0) ◦ (3, 7,−1) equals(
1× (5, 2, 0) ◦ (5, 2, 0)) +

(− 1× (5, 2, 0) ◦ (2,−5, 0)
)

+
(− 1× (5, 2, 0) ◦ (0, 0, 1))

which equals
(
1× (5, 2, 0) ◦ (5, 2, 0))

→ the two interference terms are nullified

→ orthogonality!

Same holds when computing Mira’s bit and Steve’s bit

→ CDMA has additional twists (discussed in wireless)

→ but the above is essential idea

CS 422 Park

Back to orthogonal FDM (OFDM)

→ key idea: use carrier waves that are orthogonal

Dot product of two vectors x = (x1, . . . , xn) and y =

(y1, . . . , yn)

x ◦ y =

n∑
i=1

xiyi

“Dot product” of two sinusoids x(t) = sin fxt and y(t) =

sin fyt

x(t) ◦ y(t) =
∫ ∞

−∞
(sin fxt) (sin fyt) dt

→ again: just a sum of products

More generally: x(t) ◦ y(t) = ∫∞
−∞ eifxte−ifytdt

→ since Fourier transform involves complex sinusoids

CS 422 Park

User 1 uses carrier wave y1(t) to transmit bit stream (high

and low) given by x1(t)

0 0 01 1 1

z (t)

y (t)

x (t)

1

1

1

Same for users 2 and 3

Suppose carrier waves y1(t), y2(t), y3(t) are orthogonal

CS 422 Park

Then receiver sees z1(t) + z2(t) + z3(t) which is

3∑
k=1

xk(t)yk(t)

To decode what user 1 has sent, receiver computes dot

product with y1(t)

y1(t) ◦
(3∑

k=1

xk(t)yk(t)
)

=

3∑
k=1

xk(t)
(
y1(t) ◦ yk(t)

)

= x1(t)
(
y1(t) ◦ y1(t)

)
= x1(t)

→ last steps holds if also orthonormal

But look at Fourier transform formula (lecture notes, part

2):

→ just taking dot product!

CS 422 Park

OFDM’s advantage over FDM:

→ don’t need to worry about spectra of x1(t), x2(t), x3(t)

FDM:

f
f3

0
f1 f2

B

OFDM:

f
0

f1

B

f2 f3

overlap

→ spectra allowed to overlap

CS 422 Park

Can pack more carrier frequencies within given frequency

band

→ called spectral efficiency

Technique known since the mid-1960s

→ only recently practically feasible

→ discrete Fourier transform (DFT)

→ implementation issue

CS 422 Park

Suppose usable frequency band is from fa (Hz) to fb (Hz)

Frequency band: W = fb − fa

→ ex.: fa = 2.4 GHz and fb = 2.5 GHz, W = 100 MHz

To support N users or parallel bit streams set

→ carrier spacing: f̄ = W/N

Then N carrier waves—called sub-carriers—are

→ fa, fa + f̄ , fa + 2f̄ , . . ., fa + (N − 1)f̄

Easy to check they are orthogonal

→ take dot product

Since this works for any N , does it mean we can support

arbitrarily many parallel streams?

CS 422 Park

Not quite: physics of signal propagation imposes con-

straints

→ wireless: symbol period τ cannot be too short

→ multi-path propagation

→ leads to ISI (inter-symbol interference)

→ different from ICI (inter-carrier interference)

Symbol period (or time) determines carrier spacing f̄

→ f̄ = 1/τ

Thus: total number of sub-carriers N

→ N = W/f̄

Example: τ = 3.2 µs in IEEE 802.11g WLANs

→ f̄ = 1/τ = 312.5 kHz

→ W = 20 MHz, N = W/f̄ = 64

CS 422 Park

Wireline: frequency spacing influenced by noise factors

→ e.g., ADSL: f̄ = 4.3125 kHz

→ ITU G.992.1 standard

→ copper wire: UTP (unshielded twisted pair)

→ frequency band: 0–1.104 MHz

→ N = W/f̄ = 256

Frequency band 0–4 kHz used for voice

→ also called POTS (plain old telephone service)

In the not-too-distant past, it was commonly held that

UTP copper can support at maximum 30 kbps

→ today’s speeds: several Mbps range

