Suppose A wishes to send 3 bit streams to B in parallel using three carrier frequencies f_1 , f_2 , and f_3

 \rightarrow say 3 bit streams: 1000100, 0101100, 1101101

 \rightarrow before: 3 single bits (1, 0, 1)

Does Fourier's framework work for parallel bit streams?

No.

Problem: to transmit 1000100 on carrier frequency f_1 , we need to change its weight α_f over time

- \rightarrow large, small, small, small, large, small, small
- \rightarrow per period $T_1 = 1/f_1$
- \rightarrow weights don't change in Fourier's framework
- \rightarrow cannot use as is

Could try piecemeal approach: for carrier frequency f_1

Sender-side: encoding methods remains the same

- \rightarrow bit stream: 1000100
 - during time interval $[0, T_1]$:
 - \rightarrow large sine amplitude (bit 1)

 \rightarrow i.e., large α_{f_1}

• during time interval $[T_1, 2T_1]$:

 \rightarrow small sine amplitude (bit 0)

 \rightarrow i.e., small α_{f_1}

• during time interval $[2T_1, 3T_1]$:

 \rightarrow small sine amplitude (bit 0)

 \rightarrow i.e., small α_{f_1}

• etc.

 \longrightarrow in parallel: carrier frequencies f_2 and f_3

Receiver-side:

• during time interval $[0, T_1]$: compute

$$\alpha_{f_1} = \int_0^{T_1} s(t) e^{-if_1 t} dt$$

 $\rightarrow 1$ st bit: α_{f_1} is large hence 1

• during time interval $[T_1, 2T_1]$: compute $\int_{1}^{2T_1} dx = -if_1 t dx$

$$\alpha_{f_1} = \int_{T_1} s(t) e^{-if_1 t} dt$$

 $\rightarrow 2$ nd bit: α_{f_1} is small hence 0

• during time interval $[2T_1, 3T_1]$: compute

$$\alpha_{f_1} = \int_{2T_1}^{3T_1} s(t) e^{-if_1 t} dt$$

 \rightarrow 3rd bit: α_{f_1} is small hence 0

• etc.

- \longrightarrow problem solved!
- \longrightarrow not quite
- \longrightarrow 1st bit: α_{f_1} may not be large

When performing Fourier transform over finite time interval:

- \rightarrow bleeding or leakage effect
- \rightarrow between carrier waves f_1, f_2, f_3
- \rightarrow interference
- \rightarrow weights α_{f_1} , α_{f_2} , and α_{f_3} may get corrupted
- \rightarrow hence bits may get corrupted
- \rightarrow why?

- \rightarrow one of the signals considered difficult to synthesize using sinusoids
- \rightarrow sharp transition or edge
- \rightarrow from 0 to 1, and 1 to 0

The sinusoids and their weights needed to create square wave:

- \rightarrow weights are called spectrum
- \rightarrow list of weight values
- \rightarrow ever higher frequency sinusoids required
- \rightarrow however weight values decrease: less important
- \rightarrow needed for fine detail: sharp edge

- \rightarrow square wave example: timelimited
- \rightarrow zero outside of finite time interval
- \rightarrow but spectrum: infinite
- \rightarrow if finite: called bandlimited

Fact:

If a signal is timelimited, its spectrum is not bandlimited; and vice versa

Bandlimited signal that is not timelimited:

 \rightarrow opposite from before

Connection to FDM:

When performing Fourier transform for finite time interval $[0, T_1]$

- \rightarrow similar to timelimited signal
- \rightarrow view as zero outside $[0, T_1]$
- \rightarrow sinusoid f_1 is not "pure" anymore
- \rightarrow since time limited its spectrum is not bandlimited
- \rightarrow hence Fourier transform has non-zero α_{f_2} and α_{f_3}
- \rightarrow can cause distortion when performing Fourier transform for f_2 and f_3
- \rightarrow interference!
- \rightarrow inter-channel or inter-carrier interference (ICI)

Example: IEEE 802.11 WLAN

- \rightarrow U.S.: 11 channels for 2.4 GHz systems
- \rightarrow channel: similar to carrier frequency
- \rightarrow 2.412, 2.417, 2.422, 2.427, 2.432, 2.437, 2.442, 2.447, 2.452, 2.457, 2.462 GHz
- \rightarrow channel separation must be at least by 5 channel to avoid interference
- \rightarrow three hot spots in neighboring coffee houses: 1, 6, 11
- \rightarrow same in office buildings, residential areas

Traditional way to combat ICI in FDM: use guard bands

- \rightarrow insert sufficient gaps between carrier frequencies
- \rightarrow overhead can be significant
- \rightarrow reduces how many carrier frequencies can be squeezed into a given frequency band

General picture:

Amplitude modulation (AM) is but one way to encode bits using sinusoid carrier waves

- Amplitude modulation (AM): encode bits using amplitude levels
- Frequency modulation (FM): encode bits using frequency changes
- Phase modulation (PM): encode bits using phase shifts

Also called amplitude, frequence, phase shift keying (ASK, FSK, PSK)

- \rightarrow e.g., BPSK: binary PSK
- \rightarrow or their combination
- \rightarrow QAM (quadrature amplitude modulation): amplitude and phase
- \rightarrow e.g., 16-QAM: 4 amplitudes, 4 phases
- \rightarrow constellation diagram

Clearly if frequency modulation (FM) is used then carrier frequency f is not simply f but $f\pm\delta$

- $f + \delta$: bit 1
- $f \delta$: bit 0
- f: called center frequency
- \rightarrow thus: carrier separation must be at least 2 δ (Hz) plus guard band

Other factors:

Frequency distortion

 \rightarrow amplitude degradation—called attenuation—varies by frequency

Doppler shift

- \rightarrow mobile communication
- \rightarrow carrier frequency appears faster or slower depending on direction and speed of movement