Issues with just increasing frequency:

Increasing frequency requires increase in processing speed $\rightarrow \cos t$

Wireless: above 10 GHz requires line-of-sight (LOS)

For a given frequency band (say 2.4–2.5 GHz) want to pack as many bits as possible

- \rightarrow utilize the band as much as possible
- \rightarrow also called "bandwidth"
- \rightarrow multiple lanes, i.e., broadband
- \rightarrow if one lane per user: multi-user communication

Wireless: simultaneous uplink (to base station) transmission by multiple clients (from mobiles)

- \rightarrow problem of multi-user communication
- \rightarrow also referred to as multiplexing

Simple solution to multi-user communication:

- \rightarrow share a single lane by time reservation
- \rightarrow time division multiplexing (TDM)
- Ex.: 4 users sharing a single lane, i.e., frequency
- \rightarrow divide time into blocks
- \rightarrow reserve blocks to 4 users: 1, 2, 3, 4, 1, 2, 3, 4, ...

 \rightarrow each block can carry multiple bits: block size $\rightarrow 1, 2, 3, 4$: frame or packet

Real-world example: T1 carrier (1.544 Mbps)

- 24 simultaneous users
- 8-bit block size
- squeeze 8000 frames into 1 second
 - \rightarrow frame duration: 125 μ sec
- bandwidth: $8000 \times 193 = 1.544$ Mbps
- drawbacks of using TDM for multi-user communication?

TDM allows sharing of single lane—called carrier frequency by multiple users

- \rightarrow baseband communication
- \rightarrow users alternate in time: not truly simultaneous
- \rightarrow what we want is broadband: multiple lanes
- \rightarrow increase the "size of the pie"
- \rightarrow truly simultaneous

Key problem of broadband or high-speed networks:

Given a frequency band (wired or wireless), how to create as many parallel lanes as possible

- \rightarrow frequency band or "bandwidth" (Hz): scarce resource
- \rightarrow especially wireless
- \rightarrow utilize multiple frequencies for parallel transmission
- \rightarrow frequency division multiplexing (FDM)
- \rightarrow how many lanes are possible?

State-of-the-art: OFDM (orthogonal FDM)

- \rightarrow ubiquitous in wireless networks
- \rightarrow IEEE 802.11g/n WLANs (not 802.11b)
- \rightarrow WiMAX, cellular, etc.

- three wireless hosts are sending bits to base station
- \bullet each host uses its own carrier frequency

 $\rightarrow f_1, f_2, f_3$

 \rightarrow e.g., 2.42 GHz, 2.44 GHz, 2.46 GHz

• base station receives

 \rightarrow what bits did the 3 hosts send?

- \rightarrow to recover the bits sent requires recovering the shape of the individual carrier waves
- \rightarrow with hundreds, thousands of carrier frequencies, how to do that?

Note: same problem applies to wireline broadband communication

Ex.: point-to-point link from A to B

- $\rightarrow A$ transmits bits to B over 3 parallel lanes
- \rightarrow faster file exchange

Root of FDM solution: Joseph Fourier

- \rightarrow 18th century idea ("old technology")
- \rightarrow Fourier analysis
- \rightarrow engineering bread and butter
- \rightarrow worth knowing for its own sake (great idea)

Fourier's key insight:

A complicated looking signal s(t) whose shape (i.e., strength) varies over time

is just the sum of very simple building blocks \rightarrow sinusoids

Thus:

- \rightarrow may require adding many sinusoids of different frequencies
- \rightarrow key caveat: before adding sinusoid with frequency f, multiply its magnitude by a weight α
- \rightarrow therefore complicated looking s(t) is just the weighted sum of sinusoids

Some conceptual similarity to periodic table and matter

- \rightarrow elements of periodic table: building blocks (sinusoids)
- \rightarrow matter: complicated looking signal
- \rightarrow H₂O: 2 parts H and 1 part O
- $\rightarrow C_8 H_{10} N_4 O_2$
- \rightarrow of course, matter has additional structure: not simple weighted sum

- The value of the weight α_f of sinusoid f indicates how important sinusoid f is
- For example, if $\alpha_f = 0$ then sinusoid of frequency f is not needed at all for creating s(t)
- Since there are an infinite number of frequencies (from 0 to ∞) the weighted sum may entail an infinite number of sinusoids

 \rightarrow not relevant for FDM: why?

Fourier's key insight is accompanied by a key technical contribution:

If given some complicated looking signal s(t), then for any sinusoid f Fourier provides a simple formula for finding its weight α_f

 \rightarrow a way to decompose into building blocks

Let's make use of Fourier's insight for enabling broadband communication: point-to-point link from A to B

A wishes to send 3 bits to B in parallel using three carrier frequencies f_1 , f_2 , and f_3

- \rightarrow say 3 bits: 1, 0, 1
- \rightarrow carrier frequencies: 1 Hz, 2 Hz, 3 Hz
- \rightarrow how to do it?

Fourier's conceptual and technical contribution in more precise language (aka math):

1. Complicated looking signal s(t) is weighted sum of sinusoids

$$s(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \alpha_f e^{ift} df$$

- \rightarrow called Fourier expansion
- \rightarrow integral " \int " is just continuous sum
- \rightarrow recall: $e^{ift} = \cos ft + i \sin ft$
- \rightarrow Euler's formula
- \rightarrow why complex sinusoids involving $i = \sqrt{-1}$?

2. Given s(t) and frequency f, how to find weight α_f :

$$\alpha_f = \int_{-\infty}^{\infty} s(t) e^{-ift} dt$$

- \rightarrow another weighted sum
- \rightarrow called Fourier transform
- \rightarrow algorithm to compute Fourier transform quickly: fast Fourier transform (FFT)
- \rightarrow see algorithms book