FUNDAMENTALS OF INFORMATION TRANSMISSION

- \longrightarrow applies to both wired and wireless networks
- \longrightarrow additional features unique to wireless discussed later

Bits, information, and signals

Motivation: hosts A and B are connected by point-topoint link

 ${\cal A}$ wants to send bits 011001 to ${\cal B}$

Physical medium: wired (fiber/copper) or wireless (space)

 \longrightarrow signals: electromagnetic waves

Electromagnetic wave: oscillating sine curve

Direction of vibration: perpendicular to direction of travel

- \rightarrow called transverse wave
- \rightarrow sound wave: longitudinal vibration in same direction as travel

Electromagnetic wave: two key features

\rightarrow period: T

- \rightarrow amplitude (or magnitude)
- \rightarrow third key feature?

Frequency f: how much vibration—i.e., how many periods—occur within a 1-second time window

- $\rightarrow f: 1/T$
- \rightarrow unit: Hz
- Ex.: 1 GHz sine wave has period 1 nanosecond
- Travel speed of EM waves
- \rightarrow speed of light (in vacuum)
- \rightarrow slower in copper, optical fiber, atmosphere

Electromagnetic spectrum:

 \rightarrow some of its use today

 \rightarrow logarithmic scale

 \rightarrow crowded near the 1 GHz neighborhood

Back to original problem: A wants to send B six bits 011001

 \rightarrow how do sine waves help?

Utilize amplitude (signal strength) to encode 1's and 0's

 \rightarrow large amplitude: 1

 \rightarrow small amplitude: 0

Called amplitude modulation (AM)

 \rightarrow same concept as AM radio

- \rightarrow if frequency is 1 Hz then 1 bps
- \rightarrow if frequency is 1 MHz then 1 Mbps
- \rightarrow if frequency is 1 GHz then 1 Gbps
- \rightarrow if frequency is 1 THz then 1 Tbps

Networking problem solved!

(or not \ldots)