Two types of CDMA systems deployed in practice:

- \rightarrow direct sequence spread spectrum (DSSS)
- \rightarrow frequency hopping spread spectrum (FHSS)

Direct sequence spread spectrum (DSSS):

 \rightarrow what we studied using linear algebra

Each user gets their own vector

- \rightarrow called code vector (i.e., private key)
- \rightarrow code vectors between users: orthogonal
- \rightarrow in practice: also look random (pseudo-random)
- \rightarrow prevents easy eaves dropping

Additional features/variations of DSSS:

Replication: replicate each data bit r-fold \rightarrow ex.: if r = 3 and data is 1001, then 111000000111 \rightarrow why?

Scramble data bits: one-time pad idea

Ex.:

- data bits 1000100000
- \bullet pseudo-random bits 1010011010
 - \rightarrow private key or one-time pad
 - \rightarrow called chipping sequence
- compute: data bits XOR chipping sequence
 - $\rightarrow 1000100000 \oplus 1010011010 = 0010111010$
 - \rightarrow achieves one-time pad encryption to prevent eavesdropping

- sender transmits XOR'ed bit sequence 0010111010
 - \rightarrow e.g., use amplitude (and/or phase) modulation of carrier wave
 - \rightarrow separate issue
- how does receiver decode sender's data bits?

Other benefit of scrambling with pseudo-random key? \rightarrow hint: why it's called "spread spectrum" Single-user DSSS: used in 802.11b WLAN

- \rightarrow 11-bit chip sequence
- \rightarrow single-user means: two laptops do not use orthogonal code vectors for simultaneous bit transmission
- \rightarrow even use same chip sequence
- \rightarrow multi-user communication: a different method called CSMA (carrier sense multiple access)
- \rightarrow similar to Ethernet's method
- \rightarrow discussed under link layer protocols

Second type of CDMA: frequency hopping spread spectrum (FHSS)

Select *m* carrier frequencies f_1, f_2, \ldots, f_m .

$$\rightarrow$$
 e.g., $m = 5$ with $f_1 = 101$ MHz, $f_2 = 102$ MHz, ...,
 $f_5 = 105$ MHz

To send k bits, select pseudo-random sequence from 1, 2, \ldots, m of length k

 \rightarrow e.g., if k=10 then 3 5 2 1 4 2 5 3 4 1

Send first bit on frequency f_3 , second bit on f_5 , ..., 10th bit f_1 .

 \rightarrow hop around

 \rightarrow pseudo-random sequence is like private key

Benefits:

- \rightarrow prevents eaves dropping
- \rightarrow resistant to jamming ("spread spectrum")

Drawback?

Used in old IEEE 802.11 WLAN (standards specify both DSSS and FHSS)

Used in old IEEE 802.11 Bluetooth

- \rightarrow 79 frequency hopping sequence
- \rightarrow now: part of 802.15
- \rightarrow wireless PAN (personal area network)

- \rightarrow key idea: use carrier waves that are orthogonal
- \rightarrow spectra of carrier frequencies can overlap without causing interference
- \rightarrow old guard band spacing not necessary

What does it mean for sine waves to be orthogonal to each other?

Dot product of two vectors $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$

$$x \circ y = \sum_{i=1}^{n} x_i y_i$$

 \longrightarrow sum of products

Dot product of two sinusoids $x(t) = \sin f_x t$ and $y(t) = \sin f_y t$

$$x(t) \circ y(t) = \int_{-\infty}^{\infty} (\sin f_x t) (\sin f_y t) dt$$

 \rightarrow again: just a sum of products

 \rightarrow ex.: sin t and sin 2t

More generally: $x(t) \circ y(t) = \int_{-\infty}^{\infty} e^{if_x t} e^{-if_y t} dt$

 \rightarrow since Fourier transform involves complex sinusoids \rightarrow but same form: sum of products

How to get N mutually orthogonal sinusoids?

- Suppose available frequency lies between f_a and f_b

 → bandwidth: W = f_b f_a
 → ex.: f_a = 2.4 GHz, f_b = 2.5 GHz, W = 100 MHz

 Choose N carrier frequencies as

 f f + (W/N) f + 2(W/N)
 - $\rightarrow f_b, f_b + (W/N), f_b + 2(W/N), \ldots$
 - \rightarrow ex.: N = 100
 - \rightarrow 2.4 GHz, 2.401 GHz, 2.402 GHz, ..., 2.499 GHz

Can we squeeze in arbitrarily many carrier frequencies? \rightarrow in principle, yes; in practice, no

Example: indoor wireless signal propagation

- \rightarrow time duration of single bit: called symbol period τ
- \rightarrow cannot be too short due to multi-path propagation which causes delay spread
- \rightarrow i.e., time delayed echos may overlap with next bit transmission
- \rightarrow called inter-symbol interference (ISI)
- \rightarrow different from ICI (inter-channel interference)

Given symbol period τ to prevent ISI, cannot send bits faster than $\bar{f} = 1/\tau$ Hz.

 \rightarrow use as orthogonal frequency spacing

Hence number of carrier frequencies is

 $\rightarrow N = W/\bar{f}$

Example (wireless): IEEE 802.11g WLANs

 \rightarrow uses OFDM

$$\rightarrow$$
 symbol time $\tau = 3.2 \ \mu s$

 \rightarrow part of IEEE standard

 $\rightarrow \bar{f} = 1/\tau = 312.5 \text{ kHz}$

$$\rightarrow W = 20 \text{ MHz}, N = W/\bar{f} = 64$$

Example (wireline): ADSL

- \rightarrow frequency spacing influenced by noise factors
- \rightarrow ADSL: $\bar{f} = 4.3125 \text{ kHz}$
- \rightarrow part of ITU G.992.1 standard
- \rightarrow UTP (unshielded twisted pair) copper wire
- \rightarrow frequency band: 0–1.104 MHz

$$\rightarrow N = W/\bar{f} = 256$$

Shannon showed that there is a fundamental limitation to reliable data transmission.

- ther wider the bandwidth (Hz) the higher the reliable throughput
- the noisier the channel, the smaller the reliable throughput
 - \rightarrow overhead spent dealing with corrupted bits

Channel Coding Theorem (Shannon): Given bandwidth W, signal power P_S , noise power P_N , channel subject to white noise,

$$C = W \log \left(1 + \frac{P_S}{P_N}\right)$$
 bps.

 $\rightarrow P_S/P_N$: signal-to-noise ratio (SNR)

- Increase bandwidth W (Hz) to proportionally increase reliable throughput
 - \rightarrow e.g., FDM, OFDM
 - \rightarrow best possible way
 - \rightarrow wireless bandwidth: scarce resource
- Power control (e.g., handheld wireless devices)
 - \rightarrow trade-off w.r.t. battery power
 - \rightarrow trade-off w.r.t. multi-user interference: doesn't work if everyone increases power
 - \rightarrow signal-to-interference ratio (SIR)

Signal-to-noise ratio (SNR) is expressed as $dB = 10 \log_{10}(P_S/P_N).$

Ex.: Assuming a decibel level of 30, what is the channel capacity of a telephone line?

First, W = 3000 Hz, $P_S/P_N = 1000$. Using Channel Coding Theorem,

 $C = 3000 \log 1001 \approx 30$ Kbps.

 \longrightarrow compare against 28.8 Kbps modems

- \longrightarrow what about 56 Kbps modems?
- \longrightarrow xDSL lines?

- \rightarrow modern communication: mainly for digitizing analog audio (music and voice)
- \rightarrow key issue: digitizing time
- \rightarrow digitizing amplitude: less critical due to log-response of auditory system

Sampling Theorem (Nyquist): Given continuous bandlimited signal s(t) with bandwidth W (Hz), s(t) can be reconstructed from its samples if

$$\nu > 2W$$

where ν is the sampling rate.

 $\longrightarrow \nu$: samples per second

- \rightarrow sensitivity: 20 Hz–20 KHz range (roughly 20 KHz)
- \rightarrow voice: 300 Hz–3.3 KHz (roughly 4 KHz)
- T1 TDM line: 1.544 Mbps
- \rightarrow frame size 193 (24 users, 8 bits-per-user, 1 preamble bit)
- $\rightarrow 8000$ samples per second
- $\rightarrow 193 \times 8000 = 1.544$ Mbps
- CD quality audio: 44100 samples per second
- \rightarrow also denoted Hz (44.1 KHz)
- DVD quality audio: 96 samples per second (and higher)