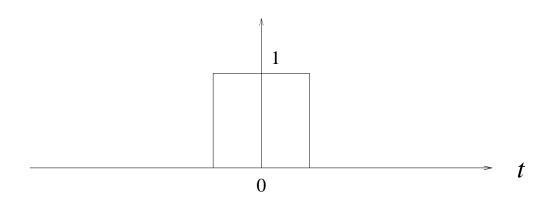
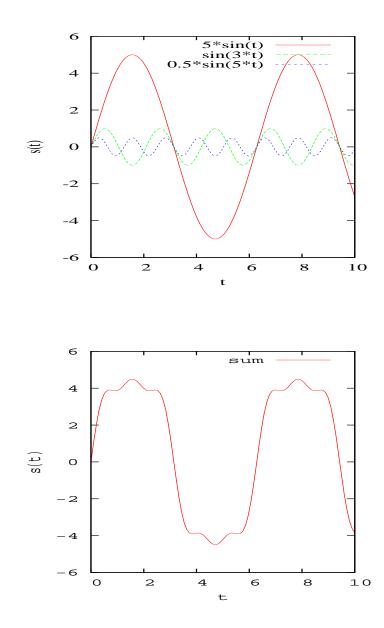
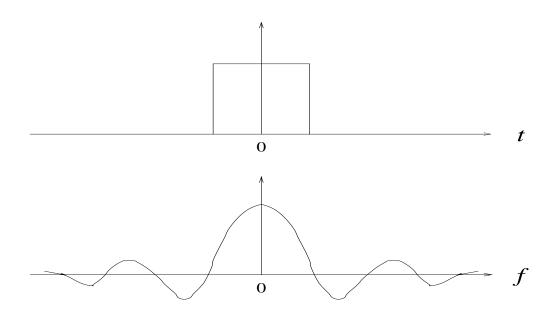
Example of spectra: square wave



- \rightarrow one of the signals considered difficult to synthesize using sinusoids
- \rightarrow due to sharp transition or edge

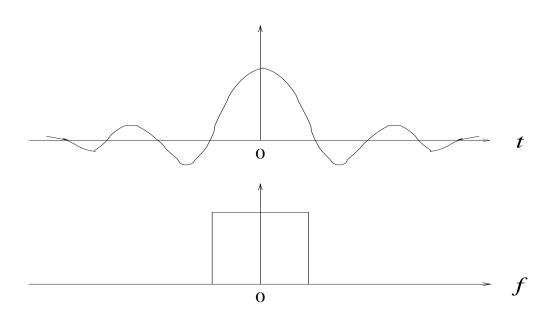


Spectrum of square wave:



- \rightarrow high frequency sine curves are less important but still needed
- \rightarrow don't become zero (close to zero for large f)
- \rightarrow infinite spectrum (i.e., not bandlimited)

Bandlimited signal:



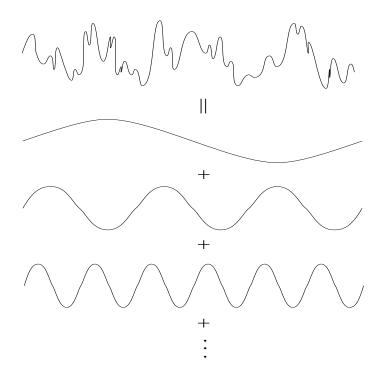
- \rightarrow take opposite from before
- \rightarrow bandlimited
- \rightarrow but signal is not timelimited

Spectrum of flat signal?

Spectrum of random signal?

Common notations to note:

signal s(t) is just sum of weighted sine curves:



sine curve of frequency $f: \sin ft$

its weight (i.e., amplitude): α_f

 \rightarrow spectrum

- The value of the weight α_f of sinusoid f indicates how important sinusoid f is
- For example, if $\alpha_f = 0$ then sinusoid of frequency f is not needed at all for creating s(t)
- The weights α_f shown for all frequencies f as a table or graph is called the spectrum of signal s(t)

```
\rightarrow the "genes" of s(t)
```

Two important notations:

1. signal s(t) is weighted sum of sinusoids: \rightarrow concept translated into math symbols

$$s(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \alpha_f e^{ift} df$$

- \rightarrow called Fourier expansion
- \rightarrow integral " \int " is just continuous sum
- \rightarrow recall: $e^{ift} = \cos ft + i \sin ft$
- \rightarrow Euler's formula
- \rightarrow why complex sinusoids involving $i = \sqrt{-1}$?

2. Given s(t), how to find weight α_f of sinusoid f:

$$\alpha_f = \int_{-\infty}^{\infty} s(t) e^{-ift} dt$$

 \rightarrow called Fourier transform

 \rightarrow another weighted sum

- \rightarrow algorithm to compute Fourier transform quickly: fast Fourier transform (FFT)
- \rightarrow see algorithms book
- \rightarrow can implement in software, chip firmware, or chip hardware (DSP)
- \rightarrow what receiver NIC has to do to decode bits sender has sent
- \rightarrow what sender does to ship bits: manipulating amplitude (AM) is referred to as IFFT (inverse FFT)

Traditional way to combat ICI in FDM: use guard bands

- \rightarrow insert sufficient gaps between carrier frequencies
- \rightarrow overhead can be significant
- \rightarrow reduces how many carrier frequencies can be squeezed into a given frequency band
- \rightarrow low spectral efficiency

Modern approach to packing more carrier frequencies within a given frequency band

- \rightarrow orthogonal FDM
- \rightarrow neighboring spectra can overlap without causing ICI
- \rightarrow the state-of-the-art in wired/wireless communication systems

Conceptual similarity to linear algebra

- \rightarrow get to make use of linear algebra!
- \rightarrow also get CDMA for free!

Simple facts from linear algebra:

Take 3-D space:

Given two vectors $x = (x_1, x_2, x_3)$ and $y = (y_1, y_2, y_3)$, they are orthogonal—i.e., perpendicular to each other if, and only if,

$$x \circ y = x_1 y_1 + x_2 y_2 + x_3 y_3 = 0$$

- \rightarrow called dot product (or inner product)
- \rightarrow 3-D: (1,0,0), (0,1,0), (0,0,1) are orthogonal
- \rightarrow also basis of 3-D
- \rightarrow called orthonormal if dot product with itself is 1

Lots of other orthogonal basis vectors

For example: (5, 2, 0), (2, -5, 0), (0, 0, 1) are mutually orthogonal

- \rightarrow but not orthonormal
- \rightarrow how to make them orthonormal?

 \rightarrow CDMA (code division multiple access)

In CDMA—for example, used by Sprint and Verizon for wireless cellular in the U.S.—(5, 2, 0), (2, -5, 0), (0, 0, 1) are called codes

- \rightarrow one code per user
- \rightarrow 3-D codes: 3 users (say Bob, Mira, Steve)

Suppose each user wants to send a single bit

 \rightarrow Bob: 1, Mira: 0, Steve: 0

Bob's cell phone: send $1 \times (5, 2, 0)$ to base station (cell tower)

Mira's cell phone: send $-1 \times (2, -5, 0)$ to base station

Steve's cell phone: send $-1 \times (0, 0, 1)$

 \rightarrow common convention: 1 for bit 1, -1 for bit 0

Base station receives: (3, 7, -1)

 $\to (1 \times (5, 2, 0)) + (-1 \times (2, -5, 0)) + (-1 \times (0, 0, 1))$

How can base station find what bit Bob has sent?

Base station: compute the dot product of what it has received, (3, 7, -1), and the code of Bob, (5, 2, 0)

$$\rightarrow (5, 2, 0) \circ (3, 7, -1) = 15 + 14 + 0 = 29$$

- \rightarrow positive: hence bit 1
- \rightarrow what's special about 29?

To find out what Mira has sent:

$$\rightarrow (2, -5, 0) \circ (3, 7, -1) = 6 - 35 + 0 = -29$$

 \rightarrow negative: hence bit 0

To find out what Steve has sent:

$$\rightarrow (0, 0, 1) \circ (3, 7, -1) = 0 + 0 + 1 = -1$$

- \rightarrow negative: hence bit 0
- \rightarrow why does this work?

Base station decoding Bob's bit: $(5, 2, 0) \circ (3, 7, -1)$

Since $(3, 7, -1) = (1 \times (5, 2, 0)) + (-1 \times (2, -5, 0)) + (-1 \times (0, 0, 1))$

 $(5,2,0) \circ (3,7,-1) \text{ equals}$ $(1 \times (5,2,0) \circ (5,2,0)) + (-1 \times (5,2,0) \circ (2,-5,0))$ $+ (-1 \times (5,2,0) \circ (0,0,1))$

which equals $(1 \times (5, 2, 0) \circ (5, 2, 0))$

 \rightarrow the two interference terms are nullified

 \rightarrow orthogonality!

Same holds when computing Mira's bit and Steve's bit.