
CS 422 Park

Example of spectra: square wave

t
0

1

→ one of the signals considered difficult to synthesize

using sinusoids

→ due to sharp transition or edge

CS 422 Park

Three sine curves and their sum:

-6

-4

-2

 0

 2

 4

 6

 0 2 4 6 8 10

s(t)

t

5*sin(t)
sin(3*t)

0.5*sin(5*t)

-6

-4

-2

 0

 2

 4

 6

 0 2 4 6 8 10

s(
t)

t

sum

CS 422 Park

Spectrum of square wave:

t
0

0
f

→ high frequency sine curves are less important but still

needed

→ don’t become zero (close to zero for large f)

→ infinite spectrum (i.e., not bandlimited)

CS 422 Park

Bandlimited signal:

t
0

0
f

→ take opposite from before

→ bandlimited

→ but signal is not timelimited

CS 422 Park

Spectrum of flat signal?

Spectrum of random signal?

CS 422 Park

Common notations to note:

signal s(t) is just sum of weighted sine curves:

...

+

+

+

||

sine curve of frequency f : sin ft

its weight (i.e., amplitude): αf

→ spectrum

CS 422 Park

Reminder:

• The value of the weight αf of sinusoid f indicates how

important sinusoid f is

• For example, if αf = 0 then sinusoid of frequency f

is not needed at all for creating s(t)

• The weights αf shown for all frequencies f as a table

or graph is called the spectrum of signal s(t)

→ the “genes” of s(t)

CS 422 Park

Two important notations:

1. signal s(t) is weighted sum of sinusoids:

→ concept translated into math symbols

s(t) =
1

2π

∫ ∞

−∞
αfe

iftdf

→ called Fourier expansion

→ integral “
∫
” is just continuous sum

→ recall: eift = cos ft + i sin ft

→ Euler’s formula

→ why complex sinusoids involving i =
√−1 ?

CS 422 Park

2. Given s(t), how to find weight αf of sinusoid f :

αf =

∫ ∞

−∞
s(t)e−iftdt

→ called Fourier transform

→ another weighted sum

→ algorithm to compute Fourier transform quickly: fast

Fourier transform (FFT)

→ see algorithms book

→ can implement in software, chip firmware, or chip

hardware (DSP)

→ what receiver NIC has to do to decode bits sender has

sent

→ what sender does to ship bits: manipulating ampli-

tude (AM) is referred to as IFFT (inverse FFT)

CS 422 Park

Traditional way to combat ICI in FDM: use guard bands

→ insert sufficient gaps between carrier frequencies

→ overhead can be significant

→ reduces how many carrier frequencies can be squeezed

into a given frequency band

→ low spectral efficiency

CS 422 Park

Modern approach to packing more carrier frequencies within

a given frequency band

→ orthogonal FDM

→ neighboring spectra can overlap without causing ICI

→ the state-of-the-art in wired/wireless communication

systems

Conceptual similarity to linear algebra

→ get to make use of linear algebra!

→ also get CDMA for free!

CS 422 Park

Simple facts from linear algebra:

Take 3-D space:

Given two vectors x = (x1, x2, x3) and y = (y1, y2, y3),

they are orthogonal—i.e., perpendicular to each other—

if, and only if,

x ◦ y = x1y1 + x2y2 + x3y3 = 0

→ called dot product (or inner product)

→ 3-D: (1, 0, 0), (0, 1, 0), (0, 0, 1) are orthogonal

→ also basis of 3-D

→ called orthonormal if dot product with itself is 1

CS 422 Park

Lots of other orthogonal basis vectors

For example: (5, 2, 0), (2,−5, 0), (0, 0, 1) are mutually

orthogonal

→ but not orthonormal

→ how to make them orthonormal?

CS 422 Park

Relevance to networking:

→ CDMA (code division multiple access)

In CDMA—for example, used by Sprint and Verizon for

wireless cellular in the U.S.—(5, 2, 0), (2,−5, 0), (0, 0, 1)

are called codes

→ one code per user

→ 3-D codes: 3 users (say Bob, Mira, Steve)

CS 422 Park

Suppose each user wants to send a single bit

→ Bob: 1, Mira: 0, Steve: 0

Bob’s cell phone: send 1 × (5, 2, 0) to base station (cell

tower)

Mira’s cell phone: send −1× (2,−5, 0) to base station

Steve’s cell phone: send −1× (0, 0, 1)

→ common convention: 1 for bit 1, −1 for bit 0

Base station receives: (3, 7,−1)

→ (
1× (5, 2, 0)

)
+
(− 1× (2,−5, 0)

)
+
(− 1× (0, 0, 1)

)

How can base station find what bit Bob has sent?

CS 422 Park

Base station: compute the dot product of what it has

received, (3, 7,−1), and the code of Bob, (5, 2, 0)

→ (5, 2, 0) ◦ (3, 7,−1) = 15 + 14 + 0 = 29

→ positive: hence bit 1

→ what’s special about 29?

To find out what Mira has sent:

→ (2,−5, 0) ◦ (3, 7,−1) = 6− 35 + 0 = −29

→ negative: hence bit 0

To find out what Steve has sent:

→ (0, 0, 1) ◦ (3, 7,−1) = 0 + 0 + 1 = −1

→ negative: hence bit 0

→ why does this work?

CS 422 Park

Base station decoding Bob’s bit: (5, 2, 0) ◦ (3, 7,−1)

Since (3, 7,−1) =
(
1× (5, 2, 0)

)
+
(− 1× (2,−5, 0)

)
+(− 1× (0, 0, 1)

)

(5, 2, 0) ◦ (3, 7,−1) equals(
1× (5, 2, 0) ◦ (5, 2, 0)) +

(− 1× (5, 2, 0) ◦ (2,−5, 0)
)

+
(− 1× (5, 2, 0) ◦ (0, 0, 1))

which equals
(
1× (5, 2, 0) ◦ (5, 2, 0))

→ the two interference terms are nullified

→ orthogonality!

Same holds when computing Mira’s bit and Steve’s bit.

