Joseph Fourier's claim: "all" signals are sums of sinusoids of different frequencies.

- \rightarrow weighted sine curves
- \rightarrow weight: amplitude of sine curve
- \rightarrow "all": not exactly but doesn't matter for us in practice

Example:

Top signal equals $\sin t + \sin 2t + \sin 3t$

 \rightarrow frequencies 1 Hz, 2 Hz, and 3 Hz

 \rightarrow weight?

Another example: signal created by

 $\rightarrow \sin t + 3\sin 2t + \sin 3t$

- \rightarrow frequency 1 Hz: weight 1 \rightarrow frequency 2 Hz: weight 3
- \rightarrow frequency 3 Hz: weight 1

Weights of sine curves are called spectrum of the signal they create.

- \rightarrow spectrum: a list or table of weights
- \rightarrow like DNA (or fingerprint/signature) of signal

Yet another example: signal created by

 $\rightarrow \sin 10t + 3\sin 20t + \sin 30t$

 \rightarrow spectrum of signal?

Another view of spectra: signals created by $\rightarrow 0.1 \sin 1t + \sin 2t + 0.1 \sin 3t$ $\rightarrow 0.05 \sin 1t + \sin 2t + 0.05 \sin 3t$ $\rightarrow \sin 2t$

Sine curves with small weights in a spectrum don't contribute much

- \rightarrow may be ignored
- \rightarrow treat as if weights were zero
- \rightarrow same attitude as compression (video, image, audio)
- \rightarrow called lossy compression
- \rightarrow lossless compression?

Back to networking:

 \rightarrow pure sine curve of frequency $f=100~\mathrm{MHz}$

- \rightarrow spectrum before amplitude modulation?
- \rightarrow spectrum afterwards?

Spectrum before and after amplitude modulation to transmit bits:

Act of morphing sine curve to carry bits introduces energy around carrier frequency.

 \rightarrow amount of spreading: called "bandwidth" of signal

If spreading is limited: zero or near zero beyond a certain point

- \rightarrow signal is called bandlimited
- \rightarrow much of communication engineering deals with bandlimited signals

Question: can the amount of spreading depend on the data (i.e., bit pattern) being carried by a carrier frequency?

Question: what is the negative impact of spreading?

Inter-channel interference (ICI): two parallel bit streams carried on two carrier frequencies 100 MHz and 101 MHz

 \rightarrow signal bandwidths around 100 MHz and 101 MHz don't overlap: no ICI

Bad case:

- \rightarrow signal bandwidths around 100 MHz and 101 MHz overlap
- \rightarrow amplitude detected by receiver is distorted
- \rightarrow ICI resulting in bit flips

Overlap (i.e., interference) causes weights from the two spectra to be added

- \rightarrow distortion of original weight values
- \rightarrow bit flips likely
- \rightarrow bit value 1 or 0 is represented by weight (amplitude)

How to prevent ICI?

Allocate sufficient spacing—guardband—between adjacent carrier frequencies.

Drawback: limits how many carrier frequencies can be squeezed in a given frequency range.

- \rightarrow e.g., 100 MHz–102 MHz
- \rightarrow estimating guardband is part of hard core radio engineering
- \rightarrow limitation of traditional FDM

Recent advance: actually a "small revolution"

- \rightarrow orthogonal FDM (OFDM)
- \rightarrow used in high-speed wired and wireless systems (e.g., ADSL, WiFi, cellular)
- \rightarrow the state-of-the-art
- \rightarrow using carrier sine curves that are orthogonal to each other, can overcome traditional guardband requirement
- \rightarrow orthogonal: at right angles

Similar idea also used in CDMA wireless networks (e.g., Verizon, Sprint)

- \rightarrow what remains: CDMA followed by OFDM
- \rightarrow covers state-of-the-art
- \rightarrow hopefully will last a few decades

Question before moving on:

- \rightarrow modulation that spreads signal spectrum is not good
- \rightarrow can cause ICI
- \rightarrow however: are there scenarios where spreading is a good thing?

Guardband example: IEEE 802.11 WLAN

- \rightarrow U.S.: 11 channels for 2.4 GHz systems
- \rightarrow channel: analogous to carrier frequency
- \rightarrow 2.412, 2.417, 2.422, 2.427, 2.432, 2.437, 2.442, 2.447, 2.452, 2.457, 2.462 GHz
- \rightarrow channel separation must be at least by 5 channels to avoid inter-channel interference (ICI)
- \rightarrow otherwise bleeding over and bit flips
- \rightarrow three hot spots in neighboring coffee houses: 1, 6, 11
- \rightarrow same in office buildings, residential areas