
Additional modulation variations:

• Amplitude modulation (AM): encode bits using amplitude levels

 \rightarrow use multiple magnitude levels

 $\rightarrow 8$ levels: 3 bits per clock tick (called baud)

- Frequency modulation (FM): encode bits using frequency changes
- Phase modulation (PM): encode bits using phase shifts

Park

Terminology: AM, FM, PM are also called amplitude, frequence, phase shift keying (ASK, FSK, PSK)

- \rightarrow e.g., BPSK: binary PSK; QPSK (4 phases)
- \rightarrow or their combination: amplitude and phase
- \rightarrow QAM (quadrature amplitude modulation): amplitude and phase
- \rightarrow e.g., 16-QAM: 4 amplitudes, 4 phases; 64-QAM
- \rightarrow e.g., WiFi, DVB

But ASK and PSK can increase bit rate only so much.

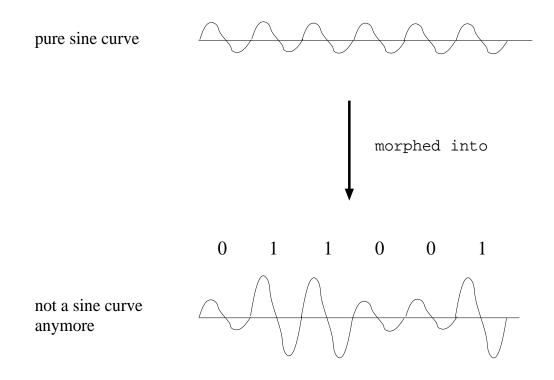
Same with increasing frequency.

 \rightarrow esp. wireless due to LOS constraint above 10 GHz

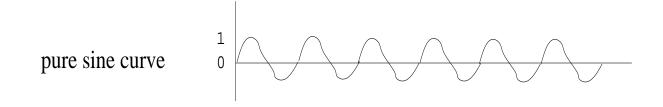
What's left?

Back to 100 MHz–102 MHz example.

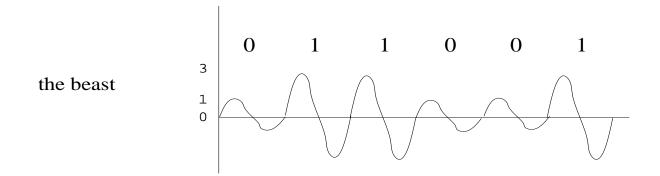
- \rightarrow bandwidth: 2 MHz
- \rightarrow how many carrier frequencies can we squeeze in?
- \rightarrow recall: with 100.0, 100.1, 100.2, ..., 101.8, 101.9, 102.0 MHz could support 31 simultaneous users
- \rightarrow what about: 100.00, 100.01, 100.02, . . ., 101.98, 101.99, 102.00 MHz
- \rightarrow how many parallel bit streams possible?


There must be a catch.

 \rightarrow what is it?


Bits on one carrier frequency may interfere with bits on another carrier frequency.

- \rightarrow e.g., bits carried on 100 MHz frequency distort bits carried on 101 MHz frequency
- \rightarrow and vice versa
- \rightarrow called inter-channel interference (ICI)
- \rightarrow why does this happen?


 \rightarrow e.g., frequency f = 100 MHz

To carry bits, it gets morphed by AM into something else. \rightarrow a beast! (think of movie "The Fly") \rightarrow a good beast First, what's the "DNA" of pure sine curve?

"DNA" of good beast carrying bits 0 1 1 0 0 1

- \rightarrow DNA from parent: pure sine curve (100 MHz)
- \rightarrow but will also carry mutant DNA: from 101 MHz, 102 MHz
- \rightarrow also how much of each mutant DNA (i.e., magnitude)
- \rightarrow ex.: magnitude 1 from 100 MHz, 2 from 101 MHz, 0.03 from 102 MHz

How to create beast from parent and mutant DNAs:

 \rightarrow just add

 \rightarrow beast = 1 × sine(100 MHz) + 2 × sine(101 MHz) + 0.03 × sine(102 MHz)

Will adding the three sine curves above create the morphed curve carrying bits 0 1 1 0 0 1 ?

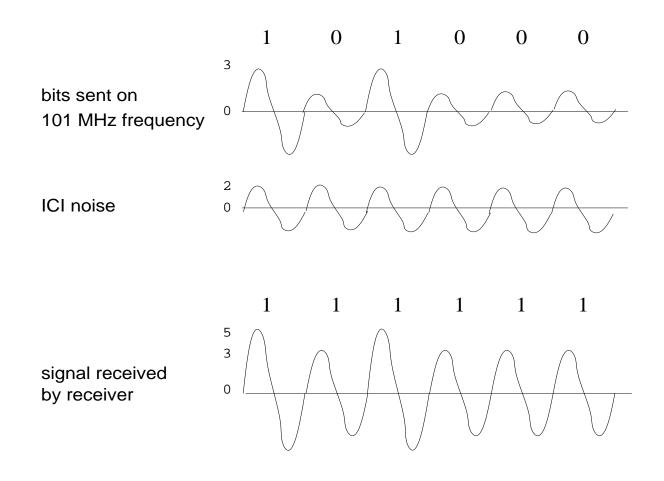
For any morphed curve (aka "signal") carrying bits, it is difficult to find by visual inspection what the component DNAs (i.e., pure sine curves) are.

 \rightarrow also how do we know that adding sine curves will give us the beast?

First, why do we care?

- \rightarrow recall motivation: inter-channel interference
- \rightarrow bits carried on frequency 100 MHz distorts bits carried on 101 MHz

 \rightarrow how?


Intuition: performing AM modulation on pure sine curve 100 MHz to ship bits 0 1 1 0 0 1 has a side effect

 \rightarrow creates mutant DNA: 101 MHz sine curve of amplitude 2

When a receiver wants to know what bits are carried on frequency 101 MHz, it "tunes into" frequency 101 MHz and checks how the amplitude varies every clock tick

- \rightarrow say bits 1 0 1 0 0 0 were sent on frequency 101 MHz
- \rightarrow but noise on 101 MHz with amplitude 2 mixes with the original signal

What bits will be receiver think have been transmitted?

Key observations:

1. Sending parallel bit streams using multiple carrier frequencies only works if we can keep inter-channel interference (ICI) under control.

 \rightarrow else receiver gets corrupted bits

2. How do we know that a morphed sine curve carrying bits is just the sum of sine curves with different amplitudes?

 \rightarrow not obvious: J. F. made important contribution during Napoleon's time

3. How do we know what sine curves to add and what amplitude each should get to create beast?

 \rightarrow J. F. gives a simple formula