FUNDAMENTALS OF INFORMATION TRANSMISSION

- \longrightarrow applies to both wired and wireless networks
- \longrightarrow special wireless features discussed later

Bits, information, and signals

Hosts A and B are connected by point-to-point link

A wants to send bits 011001 to B

Physical medium: wired (fiber/copper) or wireless (space)

- \longrightarrow signal sent from A to B: electromagnetic waves
- \longrightarrow but could be sound, smoke signals, etc.

What is an electromagnetic wave?

- \rightarrow oscillating sine curve
- \rightarrow two dimensions: time and strength
- \rightarrow strength: also called magnitude, amplitude, power, etc.

Time

Direction of vibration: perpendicular to direction of travel

 \rightarrow called transverse wave

Sound wave: vibration is longitudinal

 \rightarrow i.e., same as travel direction

So far looked at electric field component of EM wave

- \rightarrow but there is also magnetic field: perpendicular to direction of travel
- \rightarrow but 90 degree to electric field
- \rightarrow recall hand rule in high school physics
- \rightarrow application in data networks: passive RFID tags

Electromagnetic wave: three key features

$$\rightarrow$$
 period: T

- \rightarrow amplitude
- \rightarrow third key feature?

Frequency f: how much vibration—i.e., how many periods—occur within a 1-second time window

- $\rightarrow f: 1/T$
- \rightarrow unit: Hz

Ex.: popular kernel software clock (i.e., tick)—10 msec
 \rightarrow Hz?

- \rightarrow how to configure in Linux?
- Ex.: guitar string: note E—82.407 Hz

Ex.: 802.11g WLAN uses 2.4 GHz frequencies for data communication

 $\rightarrow 1~\mathrm{GHz}$ has 1 nanosecond period

Why are higher frequencies (overall speaking) good for data communication?

 \rightarrow speed of light (in vacuum)

 $\rightarrow \text{constant}$

- \rightarrow slower in copper, optical fiber
- \rightarrow also outdoor wireless depends on atmospheric conditions (e.g., humidity/moisture)
- \rightarrow in both wired and wireless: strength degrades with travel distance

Electromagnetic spectrum:

 \rightarrow some of its data communication use today

 \rightarrow logarithmic scale

 \rightarrow crowded near the 1 GHz neighborhood

Back to original problem: A wants to send B six bits 011001

 \rightarrow how do sine waves help?

Utilize amplitude to encode 1's and 0's

 \rightarrow large amplitude: 1

 \rightarrow small amplitude: 0

Method called amplitude modulation (AM)

 \rightarrow same concept as AM radio

 \rightarrow difference?

Suppose we use previous AM to transmit bits from A to B

Throughput (bps) achieved:

 \rightarrow if frequency is 1 Hz then 1 bps

 \rightarrow if frequency is 1 MHz then 1 Mbps

- \rightarrow if frequency is 1 GHz then 1 Gbps
- \rightarrow if frequency is 1 THz then 1 Tbps

Networking problem solved!

 $(or not \ldots)$

Question: can we get 2 bps from 1 Hz frequency?

Issues with just increasing frequency:

Increasing frequency requires increase in processing speed

- \rightarrow higher cost
- \rightarrow 3.2 GHz CPU costs more than 2.4 GHz CPU
- \rightarrow e.g., Intel Core 2

Another key factor: wireless

 \rightarrow above 10 GHz requires line-of-sight (LOS)

- \rightarrow radio stations must get permission to broadcast on specific AM/FM frequencies
- \rightarrow not allowed to build WLAN devices running at 7 GHz

Viewpoint: frequency is a scarce resource

 \rightarrow e.g., auctioning of 700 MHz UHF frequencies in 2008

Therefore: for a given frequency band (say 2.4–2.5 GHz) want to pack as many bits as possible

- \rightarrow utilize the band (or range) of frequencies as much as possible
- \rightarrow also called "bandwidth"
- \rightarrow e.g., bandwidth of 2.4–2.5 GHz?