## FUNDAMENTALS OF INFORMATION TRANSMISSION

## Bits, information, and signals

Elementary operation of communication: send bits or information as signal on physical medium from A to B.

- physical media—copper wire, optical fiber, air/space
- signals—voltage and currents, light pulses, radio waves, microwaves
  - $\rightarrow$  electromagnetic wave
  - $\rightarrow$ aka "light"
  - $\rightarrow$  Einstein was intrigued by it
  - $\rightarrow$  engineering a spect: well-understood
  - $\rightarrow$  other aspects of light remain a mystery (physics) even today (2007)

Other types of signal:

- smoke signals (cowboy movies)
- sound (acoustic waves)
- other?

All signals of practical interest have one thing in common:

 $\longrightarrow$  signal strength

Ex.:

- light: brightness (or intensity)
- sound: loudness (or volume)
  - $\longrightarrow$  signal strength can be measured
  - $\longrightarrow$  e.g., dB for sound

Another common feature of signals:

- $\longrightarrow$  signal strength can vary over time
- $\longrightarrow$  now: quiet, 1 sec later: loud, 2 secs later: loud
- $\longrightarrow$  use it to send 3 bits: how?
- $\longrightarrow$  what's the throughput (bps)?
- $\longrightarrow$  is it a good solution?

What else can one do to increase throughput?

Is there a way to do much better?

- $\longrightarrow$  yes
- $\longrightarrow$  at the heart of today's high-speed networks
- $\longrightarrow$  wireless networks: for free!
- $\longrightarrow$  the main goal of the following discussion

Recap: signal has

- strength
- and signal strength can vary over time

 $\longrightarrow$  computer networks: light (electromagnetic waves)

Denote signal as s(t) where:

- *t*: time (discrete or continuous)
- s(t): indicates signal strength at time t
  - $\rightarrow$  also called magnitude or amplitude

Cartoon picture of some signal s(t):

s(t)

The most important feature of signals: complicated looking signals are just sums of very simple signals

 $\longrightarrow$  simple signals: waves

 $\longrightarrow$  sine curve (why "simple"?)

Cartoon picture of this "decomposition" principle:



Real example:



## Other examples (man-made & nature):









- $\longrightarrow$  pretty much everything obeys this principle
- $\longrightarrow$  what about 2-D image?

Question: why is this the case?

A connection to linear algebra . . .

Actually, linear algebra comes to the rescue.

- $\longrightarrow$  yes, there was a reason for studying linear algebra
- $\longrightarrow$  university is a good place after all
- $\longrightarrow$  where is my linear algebra textbook?

Simple signals (sine waves): building blocks of more complicated signals

Analogous to "basis" in linear algebra

other elements (vectors) can be expressed as sums of simple elements (basis vectors)

Ex.: in 3-D

- $\longrightarrow \{(1,0,0), (0,1,0), (0,0,1)\}$  form a basis
- $\longrightarrow (7,2,4) = 7 \cdot (1,0,0) + 2 \cdot (0,1,0) + 4 \cdot (0,0,1)$
- $\longrightarrow$  coefficients: 7, 2, 4
- $\longrightarrow$  more precisely: bases may have to be multiplied
- $\longrightarrow$  called linear combination

Coefficients are *very* important:

 $\longrightarrow$  even have special name: spectrum

Note: bases need not be  $\{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$ 

- $\longrightarrow \{(2,0,0), (0,4,0), (0,0,5)\}$  is fine too
- $\longrightarrow$  what's the spectrum of (7, 2, 4)?
- $\longrightarrow$  is {(11, 6, 3), (2, 500, 7), (31, 44, 1)} valid basis?
- $\longrightarrow$  in general, to qualify as a basis . . .
- $\longrightarrow$  how many elements in a basis set?

Is there anything special about the basis set  $\{(1,0,0), (0,1,0), (0,0,1)\}?$ 

Yes,  $\{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$  is orthogonal:  $\longrightarrow (1, 0, 0) \circ (0, 1, 0) = 0$   $\longrightarrow (1, 0, 0) \circ (0, 0, 1) = 0$  $\longrightarrow (0, 1, 0) \circ (0, 0, 1) = 0$ 

where " $\circ$ " is the dot product

$$(x_1, x_2, x_3) \circ (y_1, y_2, y_3) = x_1y_1 + x_2y_2 + x_3y_3$$

Furthermore,

$$\longrightarrow (1, 0, 0) \circ (1, 0, 0) = 1 \longrightarrow (0, 1, 0) \circ (0, 1, 0) = 1 \longrightarrow (0, 0, 1) \circ (0, 0, 1) = 1$$

OK, so what's the big deal?

$$\longrightarrow$$
 why is orthogonality relevant

Allows us to calculate coefficients of basis

 $\longrightarrow$  algorithm for finding spectrum

Given basis set  $\{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$ 

$$\longrightarrow$$
 (7,2,4) = 7 · (1,0,0) + 2 · (0,1,0) + 4 · (0,0,1)

- $\longrightarrow$  spectrum: 7, 2, 4
- $\longrightarrow$  "reading off": cheating!
- $\longrightarrow$  what is the general principle?

To compute spectrum of (1, 0, 0) for (7, 2, 4):

 $\longrightarrow$  take dot product:  $(7, 2, 4) \circ (1, 0, 0) = 7$ 

$$\longrightarrow$$
 why does it work?

Since  $(7, 2, 4) = 7 \cdot (1, 0, 0) + 2 \cdot (0, 1, 0) + 4 \cdot (0, 0, 1),$ 

we have

$$(7, 2, 4) \circ (1, 0, 0)$$

$$= [7 \cdot (1, 0, 0) + 2 \cdot (0, 1, 0) + 4 \cdot (0, 0, 1)] \circ (1, 0, 0)$$

$$= 7 \cdot (1, 0, 0) \circ (1, 0, 0)$$

$$+ 2 \cdot (0, 1, 0) \circ (1, 0, 0)$$

$$+ 4 \cdot (0, 0, 1) \circ (1, 0, 0)$$

$$= 7 \cdot 1 + 2 \cdot 0 + 4 \cdot 0$$

$$= 7$$

Note: works for any orthonormal basis

$$\{(x_1, x_2, x_3), (y_1, y_2, y_3), (z_1, z_2, z_3)\}$$

Vector spaces:

- finite dimensional
  - $\rightarrow$  e.g., 7-dimensional:  $(x_1, x_2, x_3, x_4, x_5, x_6, x_7)$

 $\rightarrow$  subject of linear algebra

- infinite dimensional: signal s(t)
  - $\rightarrow$  e.g., infinite number of components  $(x_1, x_2, \ldots)$
  - $\rightarrow$  or continuously varies with t
  - $\rightarrow$  infinite number of bases
  - $\rightarrow$  bad news: cannot use linear algebra in either case
  - $\rightarrow$  good news: same basic principles

Why is knowing the coefficients (spectrum) important?

Two reasons:

- allows us to transmit bits faster
  - $\rightarrow$  the foundation of today's high-speed networks
- makes life a little easier

First reason: Allows us to transmit bits faster

How?

Two steps:

• Step 1: Encode bit in the coefficient

 $\rightarrow$  coefficient 1: bit 1

 $\rightarrow$  coefficient 0: bit 0

- $\rightarrow$  spectrum is important because it hides the bit
- $\rightarrow$  not much to it (step 2 is the interesting one)

- Step 2: To increase bps k-fold
  - $\rightarrow$  say from 1 bps to 100 bps if k = 100
  - $\rightarrow$  use k-dimensional orthonormal basis vectors
  - $\rightarrow$  call them  $\mathbf{x}^1, \mathbf{x}^2, \dots, \mathbf{x}^k$
  - $\rightarrow$  call k data bits:  $a_1, a_2, \ldots, a_k$
  - $\rightarrow$  to be sent *simultaneously* (hence *k*-fold faster!)
  - $\rightarrow$  sender prepares  $\mathbf{z} = a_1 \mathbf{x}^1 + a_2 \mathbf{x}^2 + \dots + a_k \mathbf{x}^k$
  - $\rightarrow \mathbf{z}$  is another k-dimensional vector ("scrambled")
  - $\rightarrow$  sender transmits **z** in one step
  - $\rightarrow$  receiver gets  $\mathbf{z}$
  - $\rightarrow$  to recover first bit  $a_1$ , calculates  $\mathbf{z} \circ \mathbf{x}^1$
  - $\rightarrow$  we established:  $\mathbf{z} \circ \mathbf{x}^1 = a_1$
  - $\rightarrow$  in parallel: do the same for  $\mathbf{z} \circ \mathbf{x}^i = a_i$

Powerful technique.

 $\longrightarrow$  courtesy of linear algebra

What if we wanted to add security?

 $\longrightarrow$  e.g., protect against eavesdropping?

The above linear algebra method (of course, simplified) is used by some cellular providers (e.g., Sprint) to carry k customer calls simultaneously

 $\longrightarrow$  called CDMA

 $\longrightarrow$  note: all voice calls are digital (transmit bits)

Second reason: makes life a little easier

- $\longrightarrow$  broader implications than computer networks
- $\longrightarrow$  laid back attitude
- $\longrightarrow$  don't sweat the little things
- $\longrightarrow$  in science & engineering jargon: let's approximate!

Focus on what's *important*.

Take (7, 2, 4).

- $\longrightarrow$  which building block is most important?
- $\longrightarrow$  (1,0,0) since it's multiplied by 7
- $\longrightarrow$  least important: (0, 1, 0)

From an approximation angle

- $\longrightarrow$  (7, 2, 4) kind of looks like (7, 0, 0)
- $\longrightarrow$  (7,0,4) is pretty close
- $\longrightarrow$  (7,2,4) is 100% accurate

In science & engineering: we almost never deal with exact things. (The same is true in mathematics.)

- $\longrightarrow$  many times hard
- $\longrightarrow$  most of the time: unnecessary
- $\longrightarrow$  i.e., approximate answer is good enough

Thus science & engineering is about *managed* inaccuracy.

Some examples.

Ex.: computer science

- compression: JPEG, MPEG are all lossy
  - $\rightarrow$  disk space forces us to approximate
  - $\rightarrow$  luckily human eye or ear does the same
- caching: memory hierarchy
  - $\rightarrow$  cache  $\mapsto$  RAM  $\mapsto$  disk
  - $\rightarrow$  cache contains approximation of memory
  - $\rightarrow$  memory contains approximation of disk
  - $\rightarrow$  luckily it works
  - $\rightarrow$  because programs obey locality-of-reference
- many more

Back to continuous signals s(t).

In high-speed networks, we do not use finite dimensional vectors but continuous signals.

- $\longrightarrow$  instead of vectors, sine curves
- $\longrightarrow$  basis set is now comprised of sine curves
- $\longrightarrow$  an infinite number of them
- $\longrightarrow$  linear algebra concepts carry over

Specifically: s(t) is viewed as the integral (i.e., sum)

$$s(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S(\omega) e^{i\omega t} d\omega$$

 $\longrightarrow$  signal s(t) is a linear combination of the  $e^{i\omega t}$ 

$$\longrightarrow$$
 recall:  $e^{i\omega t} = \cos \omega t + i \sin \omega t$ 

- $\longrightarrow$  building block: sine curve
- $\longrightarrow$  basically: weighted sum of sine curves
- $\longrightarrow S(\omega)$ : coefficient of basis elements

$$\longrightarrow$$
 like  $a_i$  in  $\mathbf{z} = a_1 \mathbf{x}^1 + a_2 \mathbf{x}^2 + \dots + a_k \mathbf{x}^k$ 

$$\longrightarrow$$
 note similarity:  $\mathbf{z}(t) = \sum_{i=1}^{k} a_i \mathbf{x}^i(t)$ 

 $\longrightarrow$  called Fourier expansion

- $\longrightarrow \omega = 1/T$  where T is the period
- $\longrightarrow$  called frequency

For the same reasons as before, coefficient  $S(\omega)$  (i.e., spectrum) is important:

• allows us to transmit bits faster

 $\rightarrow$  high-speed simultaneous transmission

- makes life a little easier
  - $\rightarrow$  approximation

Need to know how to compute  $S(\omega)$ 

 $\longrightarrow$  similar to dot product  $\mathbf{z} \circ \mathbf{x}^i$  to get  $a_i$ 

Formula to compute  $S(\omega)$ :

$$S(\omega) = \int_{-\infty}^{\infty} s(t) e^{-i\omega t} dt.$$

- $\longrightarrow$  called Fourier transform
- $\longrightarrow$  does it look like a "dot product"?

Note:  $a_i = \mathbf{z} \circ \mathbf{x}^i$ 

 $\longrightarrow$  keep in mind: dot product is sum of products

To send k bits simultaneously:

- pick k different frequencies  $\omega_1, \omega_2, \ldots, \omega_k$ 
  - $\rightarrow$  in place of vectors  $\mathbf{x}^1, \mathbf{x}^2, \dots, \mathbf{x}^k$

 $\rightarrow \omega_i$  called carrier frequency

- encode k bits as high/low (e.g., 1 or 0) of the  $S(\omega_i)$ 's
- sender prepares  $s(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S(\omega) e^{i\omega t} d\omega$
- sender transmits "scrambled" signal s(t)
- receiver gets s(t)
- receiver, in parallel, recovers *i*'th bit by computing Fourier transform  $S(\omega_i) = \int_{-\infty}^{\infty} s(t) e^{-i\omega_i t} dt$

- $\longrightarrow$  recall: bits cannot travel faster than SOL
- $\longrightarrow$  high-speed networks: parallel lanes
- $\longrightarrow$  different carrier frequencies  $\omega_i$ : role of lanes
- $\longrightarrow$  more frequencies, more parallel transmission
- $\longrightarrow$  also called broadband networks