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Fundamentals of information transmission

Bits, information, and signals

Elementary operation of communication: send bits or in-

formation as signal on physical medium from A to B.

• physical media—copper wire, optical fiber, air/space

• signals—voltage and currents, light pulses, radio waves,

microwaves

→ electromagnetic wave

→ aka “light”

→ Einstein was intrigued by it

→ engineering aspect: well-understood

→ other aspects of light remain a mystery (physics)

even today (2007)
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Other types of signal:

• smoke signals (cowboy movies)

• sound (acoustic waves)

• other?

All signals of practical interest have one thing in common:

−→ signal strength

Ex.:

• light: brightness (or intensity)

• sound: loudness (or volume)

−→ signal strength can be measured

−→ e.g., dB for sound
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Another common feature of signals:

−→ signal strength can vary over time

−→ now: quiet, 1 sec later: loud, 2 secs later: loud

−→ use it to send 3 bits: how?

−→ what’s the throughput (bps)?

−→ is it a good solution?

What else can one do to increase throughput?

Is there a way to do much better?

−→ yes

−→ at the heart of today’s high-speed networks

−→ wireless networks: for free!

−→ the main goal of the following discussion
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Recap: signal has

• strength

• and signal strength can vary over time

−→ computer networks: light (electromagnetic waves)

Denote signal as s(t) where:

• t: time (discrete or continuous)

• s(t): indicates signal strength at time t

→ also called magnitude or amplitude

Cartoon picture of some signal s(t):
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The most important feature of signals: complicated look-

ing signals are just sums of very simple signals

−→ simple signals: waves

−→ sine curve (why “simple”?)

Cartoon picture of this “decomposition” principle:
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Real example:
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Other examples (man-made & nature):
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−→ pretty much everything obeys this principle

−→ what about 2-D image?
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Question: why is this the case?

A connection to linear algebra . . .

Actually, linear algebra comes to the rescue.

−→ yes, there was a reason for studying linear algebra

−→ university is a good place after all

−→ where is my linear algebra textbook?
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Simple signals (sine waves): building blocks of more com-

plicated signals

Analogous to “basis” in linear algebra

other elements (vectors) can be expressed as sums

of simple elements (basis vectors)

Ex.: in 3-D

−→ {(1, 0, 0), (0, 1, 0), (0, 0, 1)} form a basis

−→ (7, 2, 4) = 7 · (1, 0, 0) + 2 · (0, 1, 0) + 4 · (0, 0, 1)

−→ coefficients: 7, 2, 4

−→ more precisely: bases may have to be multiplied

−→ called linear combination

Coefficients are very important:

−→ even have special name: spectrum
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Note: bases need not be {(1, 0, 0), (0, 1, 0), (0, 0, 1)}
−→ {(2, 0, 0), (0, 4, 0), (0, 0, 5)} is fine too

−→ what’s the spectrum of (7, 2, 4)?

−→ is {(11, 6, 3), (2, 500, 7), (31, 44, 1)} valid basis?

−→ in general, to qualify as a basis . . .

−→ how many elements in a basis set?

Is there anything special about the basis set

{(1, 0, 0), (0, 1, 0), (0, 0, 1)}?
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Yes, {(1, 0, 0), (0, 1, 0), (0, 0, 1)} is orthogonal:

−→ (1, 0, 0) ◦ (0, 1, 0) = 0

−→ (1, 0, 0) ◦ (0, 0, 1) = 0

−→ (0, 1, 0) ◦ (0, 0, 1) = 0

where “◦” is the dot product

(x1, x2, x3) ◦ (y1, y2, y3) = x1y1 + x2y2 + x3y3

Furthermore,

−→ (1, 0, 0) ◦ (1, 0, 0) = 1

−→ (0, 1, 0) ◦ (0, 1, 0) = 1

−→ (0, 0, 1) ◦ (0, 0, 1) = 1

OK, so what’s the big deal?

−→ why is orthogonality relevant
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Allows us to calculate coefficients of basis

−→ algorithm for finding spectrum

Given basis set {(1, 0, 0), (0, 1, 0), (0, 0, 1)}
−→ (7, 2, 4) = 7 · (1, 0, 0) + 2 · (0, 1, 0) + 4 · (0, 0, 1)

−→ spectrum: 7, 2, 4

−→ “reading off”: cheating!

−→ what is the general principle?
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To compute spectrum of (1, 0, 0) for (7, 2, 4):

−→ take dot product: (7, 2, 4) ◦ (1, 0, 0) = 7

−→ why does it work?

Since (7, 2, 4) = 7 · (1, 0, 0) + 2 · (0, 1, 0) + 4 · (0, 0, 1),

we have

(7, 2, 4) ◦ (1, 0, 0)

= [7 · (1, 0, 0) + 2 · (0, 1, 0) + 4 · (0, 0, 1)] ◦ (1, 0, 0)

= 7 · (1, 0, 0) ◦ (1, 0, 0)

+ 2 · (0, 1, 0) ◦ (1, 0, 0)

+ 4 · (0, 0, 1) ◦ (1, 0, 0)

= 7 · 1 + 2 · 0 + 4 · 0
= 7

Note: works for any orthonormal basis

{(x1, x2, x3), (y1, y2, y3), (z1, z2, z3)}
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Vector spaces:

• finite dimensional

→ e.g., 7-dimensional: (x1, x2, x3, x4, x5, x6, x7)

→ subject of linear algebra

• infinite dimensional: signal s(t)

→ e.g., infinite number of components (x1, x2, . . .)

→ or continuously varies with t

→ infinite number of bases

→ bad news: cannot use linear algebra in either case

→ good news: same basic principles
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Why is knowing the coefficients (spectrum) important?

Two reasons:

• allows us to transmit bits faster

→ the foundation of today’s high-speed networks

• makes life a little easier
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First reason: Allows us to transmit bits faster

How?

Two steps:

• Step 1: Encode bit in the coefficient

→ coefficient 1: bit 1

→ coefficient 0: bit 0

→ spectrum is important because it hides the bit

→ not much to it (step 2 is the interesting one)
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• Step 2: To increase bps k-fold

→ say from 1 bps to 100 bps if k = 100

→ use k-dimensional orthonormal basis vectors

→ call them x1,x2, . . . ,xk

→ call k data bits: a1, a2, . . . , ak

→ to be sent simultaneously (hence k-fold faster!)

→ sender prepares z = a1x
1 + a2x

2 + · · · + akx
k

→ z is another k-dimensional vector (“scrambled”)

→ sender transmits z in one step

→ receiver gets z

→ to recover first bit a1, calculates z ◦ x1

→ we established: z ◦ x1 = a1

→ in parallel: do the same for z ◦ xi = ai
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Powerful technique.

−→ courtesy of linear algebra

What if we wanted to add security?

−→ e.g., protect against eavesdropping?

The above linear algebra method (of course, simplified)

is used by some cellular providers (e.g., Sprint) to carry

k customer calls simultaneously

−→ called CDMA

−→ note: all voice calls are digital (transmit bits)
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Second reason: makes life a little easier

−→ broader implications than computer networks

−→ laid back attitude

−→ don’t sweat the little things

−→ in science & engineering jargon: let’s approximate!

Focus on what’s important .

Take (7, 2, 4).

−→ which building block is most important?

−→ (1, 0, 0) since it’s multiplied by 7

−→ least important: (0, 1, 0)

From an approximation angle

−→ (7, 2, 4) kind of looks like (7, 0, 0)

−→ (7, 0, 4) is pretty close

−→ (7, 2, 4) is 100% accurate
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An aside:

In science & engineering: we almost never deal with exact

things. (The same is true in mathematics.)

−→ many times hard

−→ most of the time: unnecessary

−→ i.e., approximate answer is good enough

Thus science & engineering is about managed inaccuracy.

Some examples.
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Ex.: computer science

• compression: JPEG, MPEG are all lossy

→ disk space forces us to approximate

→ luckily human eye or ear does the same

• caching: memory hierarchy

→ cache 7→ RAM 7→ disk

→ cache contains approximation of memory

→ memory contains approximation of disk

→ luckily it works

→ because programs obey locality-of-reference

• many more
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Back to continuous signals s(t).

In high-speed networks, we do not use finite dimensional

vectors but continuous signals.

−→ instead of vectors, sine curves

−→ basis set is now comprised of sine curves

−→ an infinite number of them

−→ linear algebra concepts carry over



CS 422 Park

Specifically: s(t) is viewed as the integral (i.e., sum)

s(t) =
1

2π

∫ ∞

−∞
S(ω)eiωtdω

−→ signal s(t) is a linear combination of the eiωt

−→ recall: eiωt = cos ωt + i sin ωt

−→ building block: sine curve

−→ basically: weighted sum of sine curves

−→ S(ω): coefficient of basis elements

−→ like ai in z = a1x
1 + a2x

2 + · · · + akx
k

−→ note similarity: z(t) =
∑k

i=1 aix
i(t)

−→ called Fourier expansion
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ω: cycles per second (Hz)

−→ ω = 1/T where T is the period

−→ called frequency

For the same reasons as before, coefficient S(ω) (i.e., spec-

trum) is important:

• allows us to transmit bits faster

→ high-speed simultaneous transmission

• makes life a little easier

→ approximation

Need to know how to compute S(ω)

−→ similar to dot product z ◦ xi to get ai
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Formula to compute S(ω):

S(ω) =

∫ ∞

−∞
s(t)e−iωtdt.

−→ called Fourier transform

−→ does it look like a “dot product”?

Note: ai = z ◦ xi

−→ keep in mind: dot product is sum of products
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To send k bits simultaneously:

• pick k different frequencies ω1, ω2, . . . , ωk

→ in place of vectors x1,x2, . . . ,xk

→ ωi called carrier frequency

• encode k bits as high/low (e.g., 1 or 0) of the S(ωi)’s

• sender prepares s(t) = 1
2π

∫ ∞
−∞ S(ω)eiωtdω

• sender transmits “scrambled” signal s(t)

• receiver gets s(t)

• receiver, in parallel, recovers i’th bit by computing

Fourier transform S(ωi) =
∫ ∞
−∞ s(t)e−iωitdt
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−→ recall: bits cannot travel faster than SOL

−→ high-speed networks: parallel lanes

−→ different carrier frequencies ωi: role of lanes

−→ more frequencies, more parallel transmission

−→ also called broadband networks


