Fundamentals of information transmission

Bits, information, and signals

Elementary operation of communication: send bits or information as signal on physical medium from A to B.

- physical media-copper wire, optical fiber, air/space
- signals-voltage and currents, light pulses, radio waves, microwaves
\rightarrow electromagnetic wave
\rightarrow aka "light"
\rightarrow Einstein was intrigued by it
\rightarrow engineering aspect: well-understood
\rightarrow other aspects of light remain a mystery (physics) even today (2007)

Other types of signal:

- smoke signals (cowboy movies)
- sound (acoustic waves)
- other?

All signals of practical interest have one thing in common:
\longrightarrow signal strength

Ex.:

- light: brightness (or intensity)
- sound: loudness (or volume)
\longrightarrow signal strength can be measured
\longrightarrow e.g., dB for sound

Another common feature of signals:
\longrightarrow signal strength can vary over time
\longrightarrow now: quiet, 1 sec later: loud, 2 secs later: loud
\longrightarrow use it to send 3 bits: how?
\longrightarrow what's the throughput (bps)?
\longrightarrow is it a good solution?

What else can one do to increase throughput?

Is there a way to do much better?
\longrightarrow yes
\longrightarrow at the heart of today's high-speed networks
\longrightarrow wireless networks: for free!
\longrightarrow the main goal of the following discussion

Recap: signal has

- strength
- and signal strength can vary over time
\longrightarrow computer networks: light (electromagnetic waves)
Denote signal as $s(t)$ where:
- t : time (discrete or continuous)
- $\mathrm{s}(\mathrm{t})$: indicates signal strength at time t
\rightarrow also called magnitude or amplitude

Cartoon picture of some signal $s(t)$:

The most important feature of signals: complicated looking signals are just sums of very simple signals
\longrightarrow simple signals: waves
$\longrightarrow \quad$ sine curve (why "simple"?)

Cartoon picture of this "decomposition" principle:

Real example:

Other examples (man-made \& nature):

\longrightarrow pretty much everything obeys this principle \longrightarrow what about 2-D image?

Question: why is this the case?

A connection to linear algebra...

Actually, linear algebra comes to the rescue.
\longrightarrow yes, there was a reason for studying linear algebra \longrightarrow university is a good place after all
$\longrightarrow \quad$ where is my linear algebra textbook?

Simple signals (sine waves): building blocks of more complicated signals

Analogous to "basis" in linear algebra
other elements (vectors) can be expressed as sums of simple elements (basis vectors)

Ex.: in 3-D
$\longrightarrow\{(1,0,0),(0,1,0),(0,0,1)\}$ form a basis
$\longrightarrow(7,2,4)=7 \cdot(1,0,0)+2 \cdot(0,1,0)+4 \cdot(0,0,1)$
\longrightarrow coefficients: 7, 2, 4
\longrightarrow more precisely: bases may have to be multiplied
\longrightarrow called linear combination

Coefficients are very important:
\longrightarrow even have special name: spectrum

Note: bases need not be $\{(1,0,0),(0,1,0),(0,0,1)\}$
$\longrightarrow\{(2,0,0),(0,4,0),(0,0,5)\}$ is fine too
\longrightarrow what's the spectrum of $(7,2,4)$?
\longrightarrow is $\{(11,6,3),(2,500,7),(31,44,1)\}$ valid basis?
\longrightarrow in general, to qualify as a basis ...
\longrightarrow how many elements in a basis set?

Is there anything special about the basis set

$$
\{(1,0,0),(0,1,0),(0,0,1)\} ?
$$

Yes, $\{(1,0,0),(0,1,0),(0,0,1)\}$ is orthogonal:

$$
\begin{aligned}
& \longrightarrow(1,0,0) \circ(0,1,0)=0 \\
& \longrightarrow(1,0,0) \circ(0,0,1)=0 \\
& \longrightarrow(0,1,0) \circ(0,0,1)=0
\end{aligned}
$$

where " 0 " is the dot product

$$
\left(x_{1}, x_{2}, x_{3}\right) \circ\left(y_{1}, y_{2}, y_{3}\right)=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}
$$

Furthermore,

$$
\begin{aligned}
& \longrightarrow(1,0,0) \circ(1,0,0)=1 \\
& \longrightarrow(0,1,0) \circ(0,1,0)=1 \\
& \longrightarrow(0,0,1) \circ(0,0,1)=1
\end{aligned}
$$

OK, so what's the big deal?
\longrightarrow why is orthogonality relevant

Allows us to calculate coefficients of basis

$$
\longrightarrow \text { algorithm for finding spectrum }
$$

Given basis set $\{(1,0,0),(0,1,0),(0,0,1)\}$
$\longrightarrow(7,2,4)=7 \cdot(1,0,0)+2 \cdot(0,1,0)+4 \cdot(0,0,1)$
\longrightarrow spectrum: $7,2,4$
\longrightarrow "reading off": cheating!
\longrightarrow what is the general principle?

To compute spectrum of $(1,0,0)$ for $(7,2,4)$:
\longrightarrow take dot product: $(7,2,4) \circ(1,0,0)=7$
\longrightarrow why does it work?

Since $(7,2,4)=7 \cdot(1,0,0)+2 \cdot(0,1,0)+4 \cdot(0,0,1)$,
we have
$(7,2,4) \circ(1,0,0)$

$$
\begin{aligned}
= & {[7 \cdot(1,0,0)+2 \cdot(0,1,0)+4 \cdot(0,0,1)] \circ(1,0,0) } \\
= & 7 \cdot(1,0,0) \circ(1,0,0) \\
& \quad+2 \cdot(0,1,0) \circ(1,0,0) \\
& \quad+4 \cdot(0,0,1) \circ(1,0,0) \\
= & 7 \cdot 1+2 \cdot 0+4 \cdot 0 \\
= & 7
\end{aligned}
$$

Note: works for any orthonormal basis

$$
\left\{\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}, y_{2}, y_{3}\right),\left(z_{1}, z_{2}, z_{3}\right)\right\}
$$

Vector spaces:

- finite dimensional
\rightarrow e.g., 7-dimensional: $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right)$
\rightarrow subject of linear algebra
- infinite dimensional: signal $s(t)$
\rightarrow e.g., infinite number of components $\left(x_{1}, x_{2}, \ldots\right)$
\rightarrow or continuously varies with t
\rightarrow infinite number of bases
\rightarrow bad news: cannot use linear algebra in either case
\rightarrow good news: same basic principles

Why is knowing the coefficients (spectrum) important?
Two reasons:

- allows us to transmit bits faster
\rightarrow the foundation of today's high-speed networks
- makes life a little easier

First reason: Allows us to transmit bits faster How?

Two steps:

- Step 1: Encode bit in the coefficient
\rightarrow coefficient 1: bit 1
\rightarrow coefficient 0: bit 0
\rightarrow spectrum is important because it hides the bit
\rightarrow not much to it (step 2 is the interesting one)
- Step 2: To increase bps k-fold
\rightarrow say from 1 bps to 100 bps if $k=100$
\rightarrow use k-dimensional orthonormal basis vectors
\rightarrow call them $\mathbf{x}^{1}, \mathbf{x}^{2}, \ldots, \mathbf{x}^{k}$
\rightarrow call k data bits: $a_{1}, a_{2}, \ldots, a_{k}$
\rightarrow to be sent simultaneously (hence k-fold faster!)
\rightarrow sender prepares $\mathbf{z}=a_{1} \mathbf{x}^{1}+a_{2} \mathbf{x}^{2}+\cdots+a_{k} \mathbf{x}^{k}$
$\rightarrow \mathbf{z}$ is another k-dimensional vector ("scrambled")
\rightarrow sender transmits \mathbf{z} in one step
\rightarrow receiver gets \mathbf{z}
\rightarrow to recover first bit a_{1}, calculates $\mathbf{z} \circ \mathbf{x}^{1}$
\rightarrow we established: $\mathbf{z} \circ \mathbf{x}^{1}=a_{1}$
\rightarrow in parallel: do the same for $\mathbf{z} \circ \mathbf{x}^{i}=a_{i}$

Powerful technique.

\longrightarrow courtesy of linear algebra

What if we wanted to add security?

$$
\longrightarrow \text { e.g., protect against eavesdropping? }
$$

The above linear algebra method (of course, simplified) is used by some cellular providers (e.g., Sprint) to carry k customer calls simultaneously
\longrightarrow called CDMA
\longrightarrow note: all voice calls are digital (transmit bits)

Second reason: makes life a little easier
\longrightarrow broader implications than computer networks
\longrightarrow laid back attitude
\longrightarrow don't sweat the little things
\longrightarrow in science \& engineering jargon: let's approximate!

Focus on what's important.
Take (7, 2, 4).
\longrightarrow which building block is most important?
$\longrightarrow(1,0,0)$ since it's multiplied by 7
\longrightarrow least important: $(0,1,0)$
From an approximation angle
$\longrightarrow(7,2,4)$ kind of looks like $(7,0,0)$
$\longrightarrow(7,0,4)$ is pretty close
$\longrightarrow(7,2,4)$ is 100% accurate

An aside:

In science \& engineering: we almost never deal with exact things. (The same is true in mathematics.)
\longrightarrow many times hard
\longrightarrow most of the time: unnecessary
\longrightarrow i.e., approximate answer is good enough

Thus science \& engineering is about managed inaccuracy.

Some examples.

Ex.: computer science

- compression: JPEG, MPEG are all lossy
\rightarrow disk space forces us to approximate
\rightarrow luckily human eye or ear does the same
- caching: memory hierarchy
\rightarrow cache \mapsto RAM \mapsto disk
\rightarrow cache contains approximation of memory
\rightarrow memory contains approximation of disk
\rightarrow luckily it works
\rightarrow because programs obey locality-of-reference
- many more

Back to continuous signals $s(t)$.

In high-speed networks, we do not use finite dimensional vectors but continuous signals.
\longrightarrow instead of vectors, sine curves
\longrightarrow basis set is now comprised of sine curves
\longrightarrow an infinite number of them
\longrightarrow linear algebra concepts carry over

Specifically: $s(t)$ is viewed as the integral (i.e., sum)

$$
s(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} S(\omega) e^{i \omega t} d \omega
$$

\longrightarrow signal $s(t)$ is a linear combination of the $e^{i \omega t}$
\longrightarrow recall: $e^{i \omega t}=\cos \omega t+i \sin \omega t$
\longrightarrow building block: sine curve
\longrightarrow basically: weighted sum of sine curves
$\longrightarrow S(\omega)$: coefficient of basis elements
\longrightarrow like a_{i} in $\mathbf{z}=a_{1} \mathbf{x}^{1}+a_{2} \mathbf{x}^{2}+\cdots+a_{k} \mathbf{x}^{k}$
\longrightarrow note similarity: $\mathbf{z}(t)=\sum_{i=1}^{k} a_{i} \mathbf{x}^{i}(t)$
\longrightarrow called Fourier expansion
ω : cycles per second (Hz)

$$
\begin{aligned}
& \longrightarrow \omega=1 / T \text { where } T \text { is the period } \\
& \longrightarrow \text { called frequency }
\end{aligned}
$$

For the same reasons as before, coefficient $S(\omega)$ (i.e., spectrum) is important:

- allows us to transmit bits faster
\rightarrow high-speed simultaneous transmission
- makes life a little easier
\rightarrow approximation

Need to know how to compute $S(\omega)$
\longrightarrow similar to dot product $\mathbf{z} \circ \mathbf{x}^{i}$ to get a_{i}

Formula to compute $S(\omega)$:

$$
S(\omega)=\int_{-\infty}^{\infty} s(t) e^{-i \omega t} d t
$$

\longrightarrow called Fourier transform
\longrightarrow does it look like a "dot product"?

Note: $a_{i}=\mathbf{z} \circ \mathbf{x}^{i}$
\longrightarrow keep in mind: dot product is sum of products

To send k bits simultaneously:

- pick k different frequencies $\omega_{1}, \omega_{2}, \ldots, \omega_{k}$
\rightarrow in place of vectors $\mathbf{x}^{1}, \mathbf{x}^{2}, \ldots, \mathbf{x}^{k}$
$\rightarrow \omega_{i}$ called carrier frequency
- encode k bits as high/low (e.g., 1 or 0) of the $S\left(\omega_{i}\right)$'s
- sender prepares $s(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} S(\omega) e^{i \omega t} d \omega$
- sender transmits "scrambled" signal $s(t)$
- receiver gets $s(t)$
- receiver, in parallel, recovers i 'th bit by computing

Fourier transform $S\left(\omega_{i}\right)=\int_{-\infty}^{\infty} s(t) e^{-i \omega_{i} t} d t$
\longrightarrow recall: bits cannot travel faster than SOL \longrightarrow high-speed networks: parallel lanes
\longrightarrow different carrier frequencies ω_{i} : role of lanes
\longrightarrow more frequencies, more parallel transmission
\longrightarrow also called broadband networks

