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Fundamentals of information transmission

and coding (a.k.a. communication theory)

Signals and functions

Elementary operation of communication: send signal on

medium from A to B.

• media—copper wire, optical fiber, air/space, . . .

• signals—voltage and currents, light pulses, radio waves,

microwaves, . . .

→ electromagnetic wave (let there be light!)

Signal can be viewed as a time-varying function s(t).
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If s(t) is “sufficiently nice” (Dirichlet conditions) then s(t)

can be represented as a linear combination of complex

sinusoids:
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−→ looks complicated

−→ underneath: sum of simple building blocks
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Simple example:
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−→ sinusoids form basis for other signals
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Other examples (man-made & nature):
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−→ cells, atoms, strings, etc.

−→ what’s the connection to linear algebra?
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Building blocks: analogous to “basis” in linear algebra

other elements (vectors) can be expressed as lin-

ear combinations of “elementary” elements (basis

vectors)

−→ bases like atoms

Ex.: in 3-D, {(1, 0, 0), (0, 1, 0), (0, 0, 1)} form a basis.

−→ (7, 2, 4) = 7 · (1, 0, 0) + 2 · (0, 1, 0) + 4 · (0, 0, 1)

−→ coefficients: 7, 2, 4

−→ “spectrum”

How many elements are there in a basis?
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Vector spaces:

• finite dimensional

→ linear algebra

→ e.g., 7-dimensional: (x1, x2, x3, x4, x5, x6, x7)

• infinite dimensional: signals

→ s(t): continuously varies with t

→ like infinite number of bases

→ bad news: cannot use linear algebra

→ good news: concepts remain the same

→ math: functional analysis
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Given an arbitrary element in the vector space, how to

find the coefficient of basis elements?

−→ e.g., given (7, 2, 4), coefficient of (0, 1, 0)?

But bases need not be {(1, 0, 0), (0, 1, 0), (0, 0, 1)}
−→ {(2, 0, 0), (0, 4, 0), (0, 0, 5)} is fine too

−→ what’s the spectrum of (7, 2, 4)?

−→ is {(11, 0, 3), (2, 500, 7), (31, 44, 1)} valid basis?

−→ spectrum of (7, 2, 4)?

−→ in general, to qualify as a basis . . .
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How to calculate coefficients of basis (spectrum)?

Given basis set {(1, 0, 0), (0, 1, 0), (0, 0, 1)}
−→ (7, 2, 4) = 7 · (1, 0, 0) + 2 · (0, 1, 0) + 4 · (0, 0, 1)

−→ spectrum: 7, 2, 4

−→ “read off”: cheating!

−→ what’s the general principle?
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Recall “dot product” from linear algebra:

−→ (x1, x2, x3) ◦ (y1, y2, y3) = x1y1 + x2y2 + x3y3

Ex.:

−→ (1, 0, 0) ◦ (1, 0, 0) = 1

−→ (1, 0, 0) ◦ (0, 1, 0) = 0

−→ (1, 0, 0) ◦ (0, 0, 1) = 0

What’s special about basis set {(1, 0, 0), (0, 1, 0), (0, 0, 1)}?

How can it be used to calculate spectrum?
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To compute spectrum of (1, 0, 0) for (7, 2, 4):

−→ take dot product: (7, 2, 4) ◦ (1, 0, 0) = 7

−→ why does it work?

Since (7, 2, 4) = 7 · (1, 0, 0) + 2 · (0, 1, 0) + 4 · (0, 0, 1),

we have

(7, 2, 4) ◦ (1, 0, 0)

= [7 · (1, 0, 0) + 2 · (0, 1, 0) + 4 · (0, 0, 1)] ◦ (1, 0, 0)

= 7 · (1, 0, 0) ◦ (1, 0, 0)

+ 2 · (0, 1, 0) ◦ (1, 0, 0)

+ 4 · (0, 0, 1) ◦ (1, 0, 0)

= 7 · 1 + 2 · 0 + 4 · 0
= 7

−→ light bulbs should go off!

−→ super-powerful trick
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Lastly: why do we care about spectra?

−→ allows us to focus on what’s important

Take (7, 2, 4).

−→ which building block is most important?

−→ (1, 0, 0) since it’s multiplied by 7

−→ then comes (0, 1, 0), followed by (0, 0, 1)

From an approximation angle

−→ (7, 2, 4) kind of looks like (7, 0, 0)

−→ (7, 0, 4) is pretty close

−→ (7, 2, 4) is 100% accurate

In science & engineering:

−→ rare luxury to have 100% accurate things

−→ typically: must approximate
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Ex.:

• compression: JPEG, MPEG are all lossy

→ disk space forces us to approximate

→ luckily human eye (or is it the brain?) does the

same

• caching: memory hierarchy

→ “cache 7→ RAM 7→ disk”

→ cache contains approximation of memory

→ memory contains approximation of disk

→ luckily it works

→ programs obey locality-of-reference

• etc.
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For signals that represent bits in networking

−→ take the same attitude

A complicated looking signal s(t) may be replaced by a

much simpler looking approximation s′(t)

−→ then work with s′(t)

−→ keep life simple

−→ don’t sweat the little things (except when coding)

−→ Amdahl’s law

−→ then there are additional benefits . . .
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On to signals: s(t) can be viewed as

s(t) =
1

2π

∫ ∞

−∞
S(ω)eiωtdω,

−→ signal s(t) is a linear combination of the eiωt’s

−→ recall: eiωt = cos ωt + i sin ωt

−→ building block: sine curve

−→ basically: weighted sum of sine curves

−→ fancy name: Fourier expansion

−→ S(ω): coefficient/weight of basis elements

Frequency ω: cycles per second (Hz)

−→ ω = 1/T where T is the period

To simplify, we need to know which sine curves contribute

most

−→ need to know S(ω)
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Simple rule to compute S(ω):

S(ω) =

∫ ∞

−∞
s(t)e−iωtdt.

−→ does it look like a “dot product”?

−→ to simplify: throw out all sines with “small” S(ω)

−→ how small is small?
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Example: square wave

−→ s(t) and S(ω) profiles
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Example: audio (e.g., speech) signal

Source: Dept. of Linguistics and Phonetics, Lund University
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Random signal (i.e., white noise) has “flat-looking” spec-

trum.

−→ unbounded bandwidth

−→ cannot compress

−→ what about “snow” on TV screen?
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Luckily, most “interesting” functions arising in practice

are “special”:

−→ bandlimited

−→ i.e., S(ω) = 0 for |ω| sufficiently large

−→ when S(ω) ≈ 0, can treat as S(ω) = 0

−→ let’s approximate!

−→ e.g., square wave: cut the tails off S(ω)
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Ex.: human auditory system

−→ 20 Hz–20 kHz

−→ speech is intelligible at 300 Hz–3300 Hz

−→ broadcast quality audio; CD quality audio

Telephone systems: engineered to exploit this property

−→ bandwidth 3000 Hz

−→ copper medium: various grades

−→ physical media: damages traveling signals

−→ no problem transmitting 3000 Hz signals

−→ if transmit 2 GHz signal: corruption large
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For communication:

Both absolute frequency and bandwidth are relevant.

−→ baseband vs. broadband

−→ high-speed ⇔ broadband

Manipulate shape of different frequency sinusoids to si-

multaneously carry information (i.e., bits).

−→ multi-lane highway analogy

−→ different lane ⇔ different frequency

−→ can craft signals to our liking

−→ engineering application important for communication


