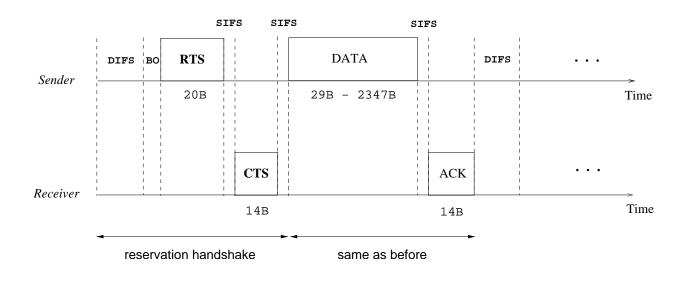
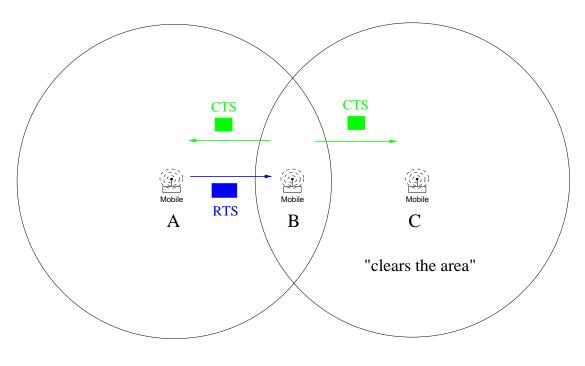

#### Additional issues with CSMA in wireless media:

Hidden station problem:




Hidden Station Problem


- (1) A transmits to B
- (2) C does not sense A; transmits to B
- (3) interference occurs at B: i.e., collision

Hidden station problem: CA (congestion avoidance)

- $\longrightarrow$  RTS/CTS reservation handshake
- Before data transmit, perform RTS/CTS handshake
- RTS: request to send
- CTS: clear to send



Hidden station problem: RTS/CTS handshake "clears" hidden area

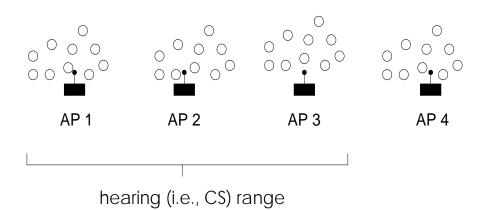


RTS/CTS Handshake

RTS/CTS perform only if data > RTS threshold

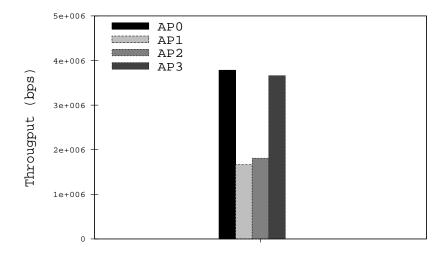
 $\longrightarrow$  why not for small data?

... feature available but not used


But: collision does not always mean junk

 $\rightarrow$  capture effect

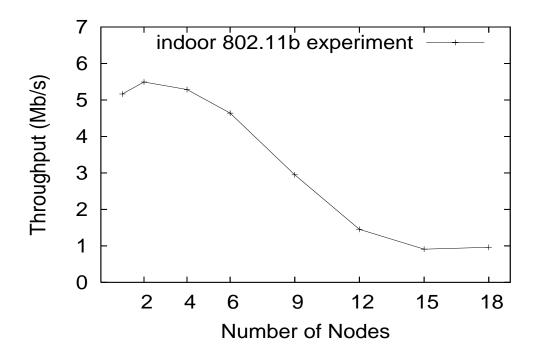
- If A's frame has stronger signal strength than C's frame, B may still be able to successfully decode A's frame
- $\rightarrow$  relative signal strength has to exceed capture threshold
- $\rightarrow$  good for throughput but also source of unfairness
- $\rightarrow$  why?
- $\rightarrow$  recall spatial diversity results


- Another problem: starvation
- $\rightarrow$  related to hidden station problem
- $\rightarrow A$  cannot hear  $C,\,C$  cannot hear A
- $\rightarrow B$  can hear both A and C
- $\rightarrow$  by CS: B gets less chance to speak
- $\rightarrow$  "sandwiched" between A and C
- $\rightarrow$  may even lead to near-starvation

Example: four 802.11 hot spots, each with 10 clients  $\rightarrow$  e.g., 4 neighboring coffee shops on a street



- $\rightarrow 3$  neighboring hot spots (BSS's) are within hearing range of each other
- $\rightarrow$  AP1 and AP4 are outside CS range


## Throughput at four hot spots:

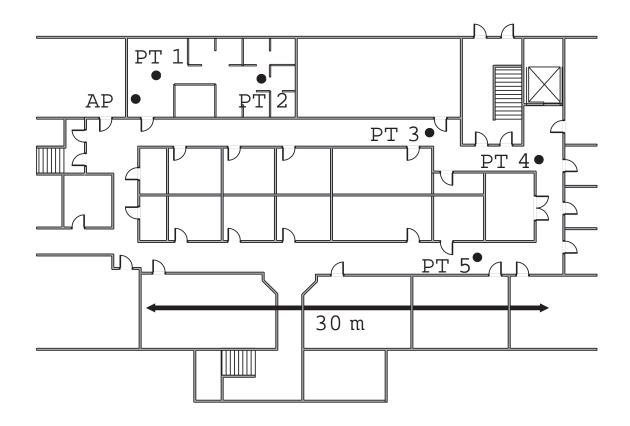


- $\rightarrow$  middle two get half the throughput
- $\rightarrow$  depending on configuration, can be even less

#### WLAN throughput collapse

- $\rightarrow$  IEEE 802.11b hot spot experiment
- $\rightarrow$  similar for 802.11 g/n




- $\rightarrow$  throughput collapse to 1 Mbps
- $\rightarrow$  only moderate contention


IEEE 802.11b defines four data rates

- $\rightarrow$  1, 2, 5.5, 11 Mbps
- $\rightarrow$  802.11g defines 8 rates: 6, 9, 12, 18, 24, 36, 48, 54 Mbps
- $\rightarrow$  difference: amount of FEC protection
- Note: the higher the data rate, the smaller the frame size  $\rightarrow$  why?
- $\rightarrow$  multiple data rates needed due to noise
- $\rightarrow$  same in cellular networks

# Ex.: HAAS basement corridor experiment

 $\rightarrow$  single wireless client





## Throughput at different locations:

- $\rightarrow$  through driver can instruct NIC to fix data rate
- $\rightarrow$  auto: adaptive method implemented in WLAN cards
- $\rightarrow$  default mode
- $\rightarrow$  note inversion: 5.5 vs. 11 Mbps code rates at PT5

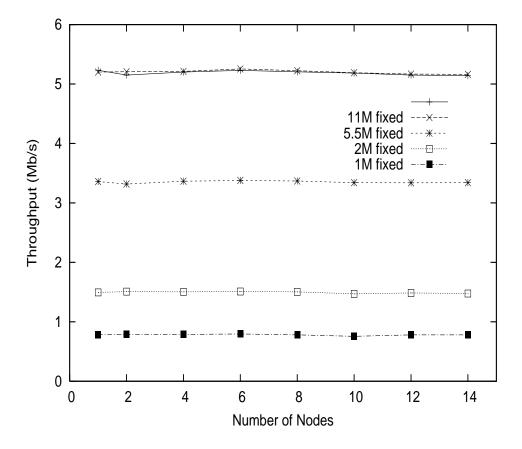
How does auto mode work?

- $\rightarrow$  called automatic rate fallback (ARF)
- $\rightarrow$  not part of IEEE 802.11 standard
- $\rightarrow$  vendor could implement different method (most implement ARF)

ARF protocol:

- if 2 successive 802.11 ACK frames are not received, downshift
- if 10 successive 802.11 ACKs are received, upshift

 $\rightarrow$  origin: Bell Labs WaveLAN (late '90s)


 $\rightarrow$  note: up/down thresholds are asymmetric

## ARF: causes the WLAN throughput collapse

 $\rightarrow$  how?

## WLAN performance without ARF

#### $\rightarrow$ fix data rates



 $\rightarrow$  no more throughput collapse

 $\rightarrow$  if throughput is bad, try fixing data rate

Huge problem but no good solutions yet

- $\rightarrow$  implementation: firmware fix
- $\rightarrow$  good problem for start-up company . . .

Cellular networks

- $\rightarrow$  use multiple data rates for FEC as in WLAN
- $\rightarrow$  throughput collapse doesn't arise

 $\rightarrow$  why?

- $\rightarrow$  also part of 4G
- 802.15
- $\rightarrow$  OFDM based wideband communication
- $\rightarrow$  may be mixed: e.g., TDMA over OFDM
- MIMO (multiple input multiple output)
- $\rightarrow$  space division multiple access (SDMA)
- $\rightarrow$  send parallel bit streams over multiple antennas using single carrier frequency
- $\rightarrow$  spatial diversity principle
- $\rightarrow$  2x2: up to 2-fold potential throughput increase

RFID (radio frequency identification)

 $\rightarrow$  tag, reader

- $\rightarrow$  passive (no battery), active
- $\rightarrow$  passive: EM principle
- $\rightarrow$  protocol: variant of ALOHA