Long Distance Wireless Communication

Principally satellite communication:

 \bullet LOS (line of sight) communication

 \rightarrow satellite base station is relay

- Effective for broadcast
- Limited bandwidth

- FDMA + TDMA: dominant
 - \rightarrow broadband
 - \rightarrow GSM cellular
 - \rightarrow recently: OFDM
- CDMA: e.g., GPS and defense related systems
- CSMA: viable?

Long-distance wireless communication: useful for broadcast service

- \longrightarrow subset of killer applications
- \longrightarrow e.g., TV, GPS, digital radio, atomic clock
- \longrightarrow not suited for Internet access service!

Short Distance Wireless Communication

- medium: wireless MAN (IEEE 802.16)
- short: wireless LAN (IEEE 802.11)
- very short: wireless PAN (IEEE 802.15)
 - \rightarrow home area networks
 - \rightarrow near field communication (e.g., RFID)

 \longrightarrow OFDM, FDMA, TDMA, CDMA, SDM/MIMO \longrightarrow contention-based multiple access (CSMA) Cellular telephony: TDMA (frequency and time division)

FDD & TDMA

Ex.: GSM (U.S. IS-136) with 25 MHz frequency band

- uplink: 890–915 MHz
- \bullet downlink: 935–960 MHz
- 125 channels 200 kHz wide each (= $25000 \div 200$)
 - \rightarrow separation needed due to cross-carrier interference
 - \rightarrow FDMA; higher spectral efficiency with OFDMA

- 8 time slots within each channel (i.e., carrier frequency)
 → TDM component
- total of 1000 possible user channels

 $\rightarrow 125 \times 8 \ (124 \times 8 \ realized)$

- codec/vocoder (i.e., compression): 13.4 kbps
- compare with T1 standard
 - $\rightarrow 24$ users at 64 kbps data rate each
 - $\rightarrow 64$ kbps vs. 13.4 kbps: landline has clearer sound

Cellular telephony: CDMA

FDD & CDMA

 \longrightarrow different code (i.e., basis vector) per user

Ex.: IS-95 CDMA with 25 MHz frequency band

• uplink: 824–849 MHz; downlink: 869–894 MHz

 \rightarrow no separate carrier frequencies

 \rightarrow every one shares same 25 MHz band

• codec: 9.6 kb/s

Recall: in CDMA each user gets a code vector

- \rightarrow code vectors between users are orthogonal
- \rightarrow pseudo-random
- \rightarrow called pseudonoise (PN) sequence or chipping code

Moreover: a single data bit is encoded using r > 1 code bits

- \rightarrow apply FEC
- $\rightarrow r$ is called code rate

In single-user CDMA:

- data bits $x = x_1 x_2 \dots x_n$
- chipping sequence (i.e., code vector) $y = y_1 y_2 \dots y_{rn}$
 - \rightarrow code rate r
 - \rightarrow pseudo-random
 - \rightarrow orthogonal if multi-user
- code rate r expanded data bits
 - $\rightarrow x' = x_{11}x_{12}\dots x_{1r}x_{21}x_{22}\dots x_{2r}\dots x_{n1}x_{n2}\dots x_{nr}$
 - \rightarrow total length: rn bits
 - \rightarrow r-fold replication of each data bit x_i
- transmitted bits $z = z_1 z_2 \dots z_{rn}$: send $x' \oplus y$
 - \rightarrow bit-wise XOR of x' and y

Ex.: Suppose r = 5. To send single bit, say x = 1,

- "expand" x to x' = 11111 (r-fold replication)
- if y = 01001 then send $z = x' \oplus y = 11111 \oplus 01001 = 10110$

To decode: apply XOR again

 $\rightarrow z \oplus y = 10110 \oplus 01001 = 11111$

Called DSSS (direct sequence spread spectrum) CDMA

- \rightarrow used in IEEE 802.11b WLAN: 11-bit chip sequence
- \rightarrow note: since single-user CDMA (DSSS), 802.11b uses CSMA for multi-user communication

Frequency hopping spread spectrum (FHSS) CDMA:

Use pseudorandom number sequence as key to index a set of carrier frequencies f_1, f_2, \ldots, f_m .

- \rightarrow frequency spreading
- \rightarrow send first bit on f_1 , second bit on f_2 , etc.

Receiver with access to pseudorandom sequence can decode transmitted signal.

- \rightarrow receiver's tuner must jump around
- \rightarrow code input as wideband output
- \rightarrow spread data across carrier frequencies: spread spectrum
- \rightarrow conceived in the 1950s for military applications
- \rightarrow why is DSSS CDMA called "spread spectrum"?

Benefits of CDMA:

• more secure against eavesdropping

 \rightarrow confidentiality

- resistant to jamming
 - \rightarrow must jam a wider spectrum: more difficult
- noise resistance
 - \rightarrow code rate r
- graceful degradation compared to FDMA/TDMA
 - \rightarrow code vectors don't need to be perfectly orthogonal for successful decoding
- resistance to multi-path fading
 - \rightarrow recall: fading varies across carrier frequencies
 - \rightarrow don't put all eggs in one basket

- \rightarrow old 802.11 wireless LAN (WLAN): DSSS and FHSS
- \rightarrow e.g.: 802.11 Bluetooth—79 frequency hopping sequence
- \rightarrow cellular (e.g., Sprint PCS, Verizon): DSSS CDMA
- $\rightarrow \mathrm{GPS}$
- Today: OFDM aims at best of both worlds
- \rightarrow FDMA: simplicity
- \rightarrow CDMA: spread spectrum
- \rightarrow simple, spectrally efficient, spread spectrum communication

Packet radio: ALOHA

- \longrightarrow downlink broadcast channel F1
- \longrightarrow shared uplink channel F1'

Ex.: ALOHANET

- data network over radio frequency
- Univ. of Hawaii, 1970; 4 islands, 7 campuses

- Norm Abramson
 - \rightarrow precursor to Ethernet (Bob Metcalfe)
 - \rightarrow pioneering Internet technology
 - \rightarrow parallel to wired packet switching technology
- FM carrier frequency
 - \rightarrow uplink: 407.35 MHz; downlink: 413.475 MHz
- \bullet bit rate: 9.6 kb/s
- contention-based multiple access: MA
 - \rightarrow plain and simple
 - \rightarrow needs explicit ACK frames