Wirelss signal propagation: indoor environment

- \rightarrow outdoors: signal strength rapidly decreases with distance
- \rightarrow indoors: more complex
- \rightarrow distance need not be dominant factor
- \rightarrow spatial diversity

Consider empty room with no obstructions:

- \rightarrow large lecture room
- \rightarrow e.g., 802.11 WLAN hot spot
- \rightarrow AP sends out signal at 2.4 (802.11b/g) or 5 GHz (802.11a/n) frequency
- \rightarrow how does indoor signal reception look like?

Signal strength reception at table height 0.7 m:

- \rightarrow carrier frequency: 5.32 GHz
- \rightarrow channel 8 in U.S. (12 channels in 5 GHz 802.11a/n)

 \rightarrow called spatial diversity

 \rightarrow SNR and throughput along straight line

 \rightarrow SNR: significant variation

- \rightarrow distance from AP is relevant but not critical
- \rightarrow good locations, bad locations
- \rightarrow can lead to unfairness and even starvation

Throughput share of 16 HP/Compaq pocket PCs: \rightarrow uplink CSMA competition

- \rightarrow significant unfairness: why?
- \rightarrow persistent unfairness
- \rightarrow location (not distance from AP) is determining factor

What causes uneven—some say chaotic—signal strength distribution in indoor environment?

Unique feature of wireless networks: wave interference

- \rightarrow echos (multi-path reflections) interact
- \rightarrow constructive vs. destructive interference

Ex.: constructive

 \rightarrow two sine waves of frequency f meet constructively $\sin f + \sin f = 2 \sin f$

Ex.: destructive

 \rightarrow two sine waves of frequency f meet destructively $\sin f + \sin(f+\pi) = 0$

Note: second sine wave is phase-shifted by 180 degrees \rightarrow multi-path reflection causes phase shifting

 \rightarrow longer distance to travel

Thus: indoors—good and bad reception spots due to wave interference

- \rightarrow moving around (i.e., changing location) helps
- \rightarrow does increasing power help?

One more thing that can help: change channels \rightarrow good/bad location depends on carrier frequency

Carrier frequency 5.805 GHz (channel 12)

- \rightarrow qualitatively similar to channel 8
- \rightarrow but quantitatively different

Thus: good spot under channel 8 may become bad spot under channel 12, and vice versa

 \rightarrow different from channel switching to reduce overcrowding

Ex.: old cordless phones with manual channel switch button

- \rightarrow switch to channel that no one else is using
- \rightarrow avoiding multi-user interference
- \rightarrow different from bad throughput due to spatial diversity

Severity of spatial diversity in 5 GHz vs. 2.4 GHz WLANs $\,$

 \rightarrow which is worse?

IEEE 802.11g/b operating in 2.4 GHz band:

 $\rightarrow 2.412 \text{ GHz} \text{ (channel 1)}$

 \rightarrow much less variation compared to 5 GHz carrier frequencies

SNR and throughput along straight line:

- \rightarrow throughput unfairness doesn't go away
- \rightarrow but less pronounced
- \rightarrow how about 700 MHz super WiFi case?

 \rightarrow mobile throughput at walking speed (HAAS corridor)

- \rightarrow walking back-and-forth from AP
- \rightarrow can observe gradual distance dependence
- \rightarrow but short-term fluctuation dominate
- \rightarrow not due to Doppler shift but spatial diversity
- \rightarrow moving in and out of good/bad spots