### Wireless LAN (WLAN): infrastructure mode



WLAN: Infrastructure Network

 $\rightarrow$  shared uplink & downlink channel F1

- basic service set (BSS)
- SSID (service set identifier): name/label of BSS
- base station: access point (AP)
- mobile stations must communicate through AP

WLAN: ad hoc mode



WLAN: Ad Hoc Network

- $\longrightarrow$  homogeneous: no base station
- $\longrightarrow$  everyone is the same
- $\longrightarrow$  share forwarding responsibility
- independent basic service set (IBSS)
- mobile stations communicate peer-to-peer
  - $\rightarrow$  also called peer-to-peer mode

# WLAN: internetworking



WLAN: Extended Service Set

- $\longrightarrow$  internetworking between BSS's through APs
- $\longrightarrow$  mobility and handoff
- extended service set (ESS): shared SSID
- APs are connected by distribution system (DS)  $\rightarrow$  typically: Ethernet switch

- How do APs and Ethernet switches know where to forward frames?
  - $\rightarrow$  spanning tree
  - $\rightarrow$  IEEE 802.1 (Perlman's algorithm)
  - $\rightarrow$  learning bridge: source address discovery
  - $\rightarrow$  per interface: log source MAC address of incoming frames
  - $\rightarrow$  initially or if unclear: broadcast
  - $\rightarrow$  a very simple form of routing
  - $\rightarrow$  adequate for small systems

Additional headache: mobility

- $\longrightarrow$  also called roaming
- $\longrightarrow$  how to perform handoff
- $\longrightarrow$  mobility management at MAC vs. IP

Mobility between BSS's in an ESS

- association
  - $\rightarrow$  registration process
  - $\rightarrow$  AP sends out periodic beacon frame
  - $\rightarrow$  mobile station (MS) associates with one AP
- disassociation
  - $\rightarrow$  upon permanent departure: notification

Handoff from old to new AP:

- reassociation
  - $\rightarrow$  movement of MS from one AP to another
  - $\rightarrow$  client initiated
  - $\rightarrow$  e.g., AP's signal strength is low
  - $\rightarrow$  passive (beacon) or active (probe) scanning to find alternate AP
  - $\rightarrow$  go through association process
  - $\rightarrow$  inform new AP of old AP
  - $\rightarrow$  forwarding of buffered frames from old to new AP in ESS

Note: when and parts of how to perform handoff are not part of IEEE standard

 $\rightarrow$  vendor dependent

IEEE 802.11b/g WLAN spectrum 2.4-2.4835 GHz:

- $\longrightarrow$  11 channels (U.S.)
- $\longrightarrow$  2.412 GHz, 2.417 GHz, ..., 2.462 GHz
- $\longrightarrow$  unlicensed ISM (Industrial, Scientific, Medical) band
- $\longrightarrow$  global: 2.4–2.4835 GHz
- $\longrightarrow$  up to 14 channels (e.g., Japan)

IEEE 802.11a: 5.15–5.35 GHz and 5.725–5.825 GHz

- $\longrightarrow$  UNNI (unlicensed National Information Infrastructure)
- $\longrightarrow$  non-global
- IEEE 802.11n: both 2.4 and 5 GHz
  - $\longrightarrow$  2.4 GHz: backward compatible
  - $\longrightarrow$  also uses multiple antennae
  - $\rightarrow$  called MIMO (multiple input multiple output)
  - $\longrightarrow$  e.g., Apple's 802.11n has 3 antennae

### IEEE 802.11 WLAN MAC: uses CSMA

## $\rightarrow$ multi-user bandwidth sharing

However:

- $\bullet$  802.11b: uses DSSS CDMA
  - $\rightarrow$  11-bit chip sequence (Barker sequence)
  - $\rightarrow$  single-user DSSS

 $\rightarrow$  why?

- $\bullet$  802.11a/g/n: uses OFDM
  - $\rightarrow$  single-user OFDM (i.e., not OFDMA)
  - $\rightarrow$  also called single-carrier (vs. multi-carrier)
  - $\rightarrow$  802.11g: 48 carrier frequencies
  - $\rightarrow$  subcarrier separation: 312.5 KHz
  - $\rightarrow$  bits of single frame are distributed across 48 subcarriers
  - $\rightarrow$  first bit on subcarrier 1, second bit on subcarrier 2, etc.
  - $\rightarrow$  but: transmission is sequential—not parallel!
  - $\rightarrow$  similar to FHSS
  - $\rightarrow$  why use OFDM without parallel speed-up?

Why not use OFDMA?

## <u>IEEE 802.11 MAC</u>

- $\longrightarrow$  CSMA/CA with exponential backoff
- $\longrightarrow$  almost like CSMA/CD
- $\longrightarrow$  drop CD
- $\longrightarrow$  explicit positive ACK frame
- $\longrightarrow$  added optional feature: CA (collision avoidance)

Two modes for MAC operation:

• Distributed coordination function (DCF)

 $\rightarrow$  multiple access (default mode)

- Point coordination function (PCF)
  - $\rightarrow$  polling-based priority
- ... neither PCF nor CA used in practice

## Timeline without collision:



- SIFS (short interframe space): 10  $\mu \rm s$
- Slot Time: 20  $\mu s$
- DIFS (distributed interframe space): 50  $\mu \rm s$ 
  - $\rightarrow$  DIFS = SIFS + 2 × slot time
- BO: variable back-off (within one CW)

 $\rightarrow$  CWmin: 31; CWmax: 1023

## Time snapshot with Mira-come-lately:





# Time snapshot with collision (Sue & Mira):



# MAC throughput and collision (simulation):



# MAC throughput (experiment):

# $\longrightarrow$ HP iPAQ pocket PC running Linux



### Additional issues with CSMA in wireless media:

Hidden station problem:



Hidden Station Problem

- (1) A transmits to B
- (2) C does not sense A; transmits to B
- (3) interference occurs at B: i.e., collision

Hidden station problem: CA (congestion avoidance)

- $\longrightarrow$  RTS/CTS reservation handshake
- Before data transmit, perform RTS/CTS handshake
- RTS: request to send
- CTS: clear to send



Hidden station problem: RTS/CTS handshake "clears" hidden area



RTS/CTS Handshake

RTS/CTS perform only if data > RTS threshold

 $\longrightarrow$  why not for small data?

... feature available but not used

- Another problem: starvation
- $\rightarrow$  related to hidden station problem
- $\rightarrow A$  cannot hear  $C,\,C$  cannot hear A
- $\rightarrow B$  can hear both A and C
- $\rightarrow$  by CS: B gets less chance to speak
- $\rightarrow$  "sandwiched" between A and C
- $\rightarrow$  may even lead to near-starvation

Example: four 802.11 hot spots, each with 10 clients  $\rightarrow$  e.g., 4 neighboring coffee shops on a street



- $\rightarrow 3$  neighboring hot spots (BSS's) are within hearing range of each other
- $\rightarrow$  AP1 and AP4 are outside CS range

## Throughput at four hot spots:



- $\rightarrow$  middle two get half the throughput
- $\rightarrow$  depending on configuration, can be even less

#### WLAN throughput collapse

- $\rightarrow$  IEEE 802.11b hot spot experiment
- $\rightarrow$  similar for 802.11 g/n



- $\rightarrow$  throughput collapse to 1 Mbps
- $\rightarrow$  only moderate contention

IEEE 802.11b defines four data rates

- $\rightarrow$  1, 2, 5.5, 11 Mbps
- $\rightarrow$  802.11g defines 8 rates: 6, 9, 12, 18, 24, 36, 48, 54 Mbps
- $\rightarrow$  difference: amount of FEC protection
- Note: the higher the data rate, the smaller the frame size  $\rightarrow$  why?
- $\rightarrow$  multiple data rates needed due to noise
- $\rightarrow$  same in cellular networks

# Ex.: HAAS basement corridor experiment

 $\rightarrow$  single wireless client





# Throughput at different locations:

- $\rightarrow$  through driver can instruct NIC to fix data rate
- $\rightarrow$  auto: adaptive method implemented in WLAN cards
- $\rightarrow$  default mode
- $\rightarrow$  note inversion: 5.5 vs. 11 Mbps code rates at PT5

How does auto mode work?

- $\rightarrow$  called automatic rate fallback (ARF)
- $\rightarrow$  not part of IEEE 802.11 standard
- $\rightarrow$  vendor could implement different method (most implement ARF)

ARF protocol:

- if 2 successive 802.11 ACK frames are not received, downshift
- if 10 successive 802.11 ACKs are received, upshift

 $\rightarrow$  origin: Bell Labs WaveLAN (late '90s)

 $\rightarrow$  note: up/down thresholds are asymmetric

# ARF: causes the WLAN throughput collapse

 $\rightarrow$  how?

## WLAN performance without ARF

### $\rightarrow$ fix data rates



 $\rightarrow$  no more throughput collapse

 $\rightarrow$  if throughput is bad, try fixing data rate

Huge problem but no good solutions yet

- $\rightarrow$  implementation: firmware fix
- $\rightarrow$  good problem for start-up company . . .

Cellular networks

- $\rightarrow$  use multiple data rates for FEC as in WLAN
- $\rightarrow$  throughput collapse doesn't arise

 $\rightarrow$  why?

- $\rightarrow$  also part of 4G
- 802.15
- $\rightarrow$  OFDM based wideband communication
- $\rightarrow$  may be mixed: e.g., TDMA over OFDM
- MIMO (multiple input multiple output)
- $\rightarrow$  space division multiple access (SDMA)
- $\rightarrow$  send parallel bit streams over multiple antennas using single carrier frequency
- $\rightarrow$  spatial diversity principle
- $\rightarrow$  2x2: up to 2-fold potential throughput increase

RFID (radio frequency identification)

 $\rightarrow$  tag, reader

- $\rightarrow$  passive (no battery), active
- $\rightarrow$  passive: EM principle
- $\rightarrow$  protocol: variant of ALOHA