LINK LAYER: WIRELESS MEDIA

Current Trend

- WLAN explosion
 - \rightarrow took many by surprise (close to a decade now)
- cellular telephony: 3G/4G
 - \rightarrow cellular providers, telcos, data in the same mix
 - \rightarrow all-in-one handheld: e.g., iPhone, Android
 - \rightarrow special purpose handhelds: e.g., Kindle ebook, iPad tablet
- self-organization by citizens for local access
 - \rightarrow free WiFi hot spots
- large-scale hot spots: coffee shops, airport lounges, trains, university/enterprise campuses, cities, etc.
 - \rightarrow part of everyday life

- boundary between local and wide area wireless blurring
 - \rightarrow cellular (long-distance) vs. WLAN (short-distance)
 - \rightarrow 802.16 (WiMax): competition to cellular
 - \rightarrow aiming at 4G speed: 1 Gbps
 - \rightarrow cellular (900 MHz–2 GHz), 2.4 and 5 GHz spectra: very busy
 - \rightarrow super WiFi (or WiFi 2.0): sub-900 MHz spectrum (old analog TV), esp. 700 MHz; next frontier?
 - \rightarrow typical devices: multiple air interfaces

- very short distances (wireless personal or home area networks)
 - \rightarrow bluetooth, UWB, Zigbee: in general, 802.15
 - \rightarrow e.g., UWB (802.15.3): 3.1–10.6 GHz
 - \rightarrow wireless USB: get rid of pesky wires!
 - \rightarrow also 60 GHz wireless networks
 - \rightarrow 802.11n in the mix (e.g., entertainment networks— Apple TV)
 - \rightarrow RFID (radio frequency identification): passive RFID does not require power
 - \rightarrow many applications: bus/train card, wireless epay/credit card, inventory control, etc.

Wireless networks: where it's happening

Technology perspective:

• Bad news: multiple unsettled/evolving technologies, chaotic landscape

 \rightarrow can quickly get confusing

- Good news: wireless broadband technology
 - \rightarrow based on what we already covered
 - \rightarrow <u>OFDM</u>, FDMA/TDMA, CDMA, CSMA

What remains:

- \longrightarrow networking features unique to wireless
- \longrightarrow specific wireless technologies

Wireless Communication: Features

Use electromagnetic waves in wireless media (air/space) to transmit information.

 \longrightarrow NIC: also called air interface

- directed signal propagation: e.g., directed antenna or IR (infrared)
- undirected signal propagation: e.g., omni-directional antenna
 - \longrightarrow mainly: microwaves (2–66 GHz)
 - \longrightarrow target range: 100 MHz–10 GHz, 60 GHz

Key differences with wired communication:

- increased exposure to interference and noise \rightarrow lack of physical shielding
- \bullet inter-user interference cannot be localized at switch
 - \rightarrow Ethernet evolution to switch doesn't apply
 - \rightarrow can be problem for QoS (e.g., VoIP, IPTV)
 - \longrightarrow information is inherently exposed
 - \longrightarrow bad for networking
 - \longrightarrow bad for security
 - \longrightarrow wireless transmission: peculiar properties
- But: good for convenient access
 - \longrightarrow trumps other concerns

Miscellaneous spectrum allocations (U.S.):

 \rightarrow FCC (Federal Communications Commission)

- AM Radio: 0.535 MHz–1.7 MHz
- FM Radio: 88 MHz–108 MHz
- \bullet TV: 174 MHz–216 MHz, 470 MHz–825 MHz

 \rightarrow analog TV spectrum: VHF, UHF

 \rightarrow audio (FM), video (AM)

- \bullet GPS (Global Positioning System): 1.2276–1.57542 GHz
 - \longrightarrow CDMA
 - \longrightarrow ~30 satellites (DoD), 10900 miles
 - \longrightarrow navigation service: trilateration

- Cellular telephone: 824–849 MHz, 869–894 MHz
 - \rightarrow AMPS: FDM, analog
 - \rightarrow GSM: TDMA, digital
 - \rightarrow IS-95: CDMA, digital
 - \rightarrow TDMA and CDMA phones don't interoperate
- Cellular PCS: 1.85–1.99 GHz
 - \rightarrow CDMA, TDMA
- Ex.: quad-band phone
 - \longrightarrow works at different frequency bands
 - \longrightarrow loosely called: 800, 900, 1800, 1900 MHz

- WLAN: IEEE 802.11b 2.4 GHz–2.4835 GHz \rightarrow CSMA/CA
 - \rightarrow same frequency range for 802.11g
 - \rightarrow 802.11g also uses OFDM: does it make sense?
- WLAN: Bluetooth 2.4–2.4835 GHz
- WLAN: IEEE 802.11a 5.725–5.850 GHz
 - \rightarrow same for 802.11n
- WiMax: IEEE 802.16 2–66 GHz
 - $\rightarrow 2.3, 2.5, 3.5$ Ghz,
 - \rightarrow OFDM and TDMA based
- RFID: 902–928 MHz (aka 915 MHz)
 - \rightarrow CDMA's spread spectrum based

• Satellite: C-band 3.7 GHz–4.2 GHz (downlink), 5.925 GHz–6.425 GHz (uplink)

 \rightarrow TDMA based

- Satellite: Ku-band 11.7 Ghz–12.2 Ghz (downlink), 14 GHz–14.5 GHz (uplink)
- Many other frequency bands
 - \rightarrow cf. FCC chart
 - \rightarrow www.ntia.doc.gov/osmhome/allochrt.pdf