Link Layer: Wireless Media

Current Trend

• WLAN explosion (also called WiFi)
 → took most by surprise
• cellular telephony: 3G/4G
 → cellular providers, telcos, data in the same mix
 → all-in-one handheld: e.g., Apple iPhone
• self-organization by citizens for local access
 → free WiFi hot spots
• large-scale hot spots: coffee shops, airport lounges, trains, university/enterprise campuses, cities, etc.
 → part of everyday life
 → difficult to turn back clock
• boundary between local and wide area wireless blurring
 → cellular (long-distance) vs. WLAN (short-distance)
 → 802.16 (WiMax): designed to compete with cellular; different version WiBro (Korea)

• also very short distances ("wireless personal area networks")
 → bluetooth, UWB, Zigbee: in general, 802.15
 → 802.11n also in the mix (e.g., Apple TV)
 → 2.4 and 5 GHz spectra: very busy

Integral part of the Internet:
 → where it’s happening
Wireless Communication: Background

Use electromagnetic waves in wireless media (air/space) to transmit information.

→ NIC: also called air interface

• directed signal propagation: e.g., directed antenna or IR (infrared)

• undirected signal propagation: e.g., omni-directional antenna

→ mainly: microwaves (2–66 GHz)

→ focus: 2–10 GHz
Key differences with wired communication:

- increased exposure to interference and noise
 → lack of physical shielding

- inter-user interference cannot be localized at switch
 → cannot use buffering
 → problem for QoS (e.g., VoIP)

 → information is inherently exposed
 → bad for networking
 → bad for security
 → good for convenient access (trumps others)
signal propagation and variation is more complex
 \[\rightarrow\] attenuation (also in wired)
 \[\rightarrow\] refraction, absorption, reflection, diffraction
 \[\rightarrow\] multi-path fading
 \[\rightarrow\] mobility (extreme: bullet train)

Network bandwidth: polarized
 \[\rightarrow\] high and low bandwidth coexist
 \[\rightarrow\] e.g., 10 Gbps and 11 Mbps
 \[\rightarrow\] shrinking (e.g., 802.11n) but slowly
 \[\rightarrow\] speed mismatch: makes things challenging
 \[\rightarrow\] i.e., weakest link
Electromagnetic spectrum (logarithmic scale):

- **Radio Wave**: 9 kHz–300 GHz
- **Microwave**: 1 GHz–1 THz
- **Wireless**: concentration ~0.8 GHz–6 GHz
- **Optical fiber**: ~200 THz; 25 THz bandwidth
Miscellaneous spectrum allocations (U.S.):

→ FCC (Federal Communications Commission)

- AM Radio: 0.535 MHz–1.7 MHz
- FM Radio: 88 MHz–108 MHz
- TV: 174 MHz–216 MHz, 470 MHz–825 MHz
 → audio (FM), video (AM)
- GPS (Global Positioning System): 1.2276 GHz–1.57542 GHz
 → CDMA
 → 24 satellites (DoD), 10900 miles
 → navigation service: trilateration
• Cellular telephone: 824 MHz–849 MHz, 869 MHz–894 MHz
 → AMPS: FDM, analog
 → GSM: TDMA, digital
 → IS-95: CDMA, digital
• PCS: 1.85 GHz–1.99 GHz
 → CDMA, TDMA

E.g., quad-band phone
 → works at different frequency bands
 → loosely called: 800, 900, 1800, 1900 MHz
• WLAN: IEEE 802.11b 2.4 GHz–2.4835 GHz
 → CSMA/CA
 → same frequency range for 802.11g
• WLAN: Bluetooth 2.4 GHz–2.4835 GHz
• WLAN: IEEE 802.11a 5.725 GHz–5.850 GHz
• WiMax: IEEE 802.16 2 GHz–66 GHz
 → TDMA based
• Satellite: C-band 3.7 GHz–4.2 GHz (downlink), 5.925 GHz–6.425 GHz (uplink)
 → TDMA based

• Satellite: Ku-band 11.7 GHz–12.2 GHz (downlink), 14 GHz–14.5 GHz (uplink)

• Many other frequency bands
 → cf. FCC chart
 → www.ntia.doc.gov/osmhome/allochrt.pdf