Ethernet

\longrightarrow copper, fiber

Types (some just historical):

- 10Base2 (ThinNet): coax, segment length 200 m, 30 nodes/segment
- 10Base5 (ThickNet): coax, segment length 500 m, 100 nodes/segment
- 10Base-T: twisted pair, segment length 100 m, 1024 nodes/segment
- 100Base-T (Fast Ethernet): category 5 UTP, fiber (also 100VG-AnyLAN)
- Gigabit \& 10 Gbps Ethernet: fiber, category 5 UTP
- 100 Gbps Ethernet

Connectivity example (stone age):

- single-homed vs. multi-homed
- unique 48-bit Ethernet address per NIC
- physical network: bus vs. hub vs. switch
\rightarrow very old vs. old vs. not-so-old
\rightarrow today: switched Ethernet

High-speed Ethernets have shorter network diameter

- 2500 m for 10 Mbps Ethernet
- 200 m for 100 Mbps Ethernet
- even shorter for 1 Gbps Ethernet
\rightarrow unless fully switched (later discussion)
\longrightarrow distance limitations: due to Ethernet protocol
\longrightarrow creates complications for long-haul
\longrightarrow e.g., tens, hundreds, or thousands of miles
$\longrightarrow 1,10,100$ Gbps: tier-1 backbone speeds
\longrightarrow also multiples of 1 and 10 Gbps

DIX Ethernet frame:

IEEE 802.3 Ethernet frame:

LLC header
\longrightarrow IEEE 802.2 LLC (Logical Link Control)
\longrightarrow two Ethernet types co-exist (802.3 dominant)

Digital transmission of digital data:
\rightarrow Ethernet uses baseband transmission

Using square waves to represent bits
\rightarrow methods and issues

- NRZ-L (non-return to zero, level)
- NRZI (NRZ invert on ones)
- Manchester (biphase or self-clocking codes)

Trade-offs:

- NRZ codes-long sequences of 0's (or 1's) causes synchronization problem; need extra control line (clock) or sensitive signalling equipment.
- Manchester codes - synchronization achieved through self-clocking; however, achieves only 50% efficiency vis-à-vis NRZ codes.

4B/5B code

Encode 4 bits of data using 5 bit code where the code word has at most one leading 0 and two trailing 0 's.
$0000 \leftrightarrow 11110,0001 \leftrightarrow 01001$, etc.
\longrightarrow at most three consecutive 0's
\longrightarrow efficiency: 80%

Encoding: Manchester

\longrightarrow note: Ethernet is baseband

Addressing:

- 48 bit unique address
- point-to-point
- broadcast (all 1's)

Receiver: Ethernet NIC accepts frames with "relevant" address.

- accepts only own frame address
\rightarrow default
- accepts all frames: called promiscuous mode
\rightarrow can set with root privilege
\rightarrow useful for traffic monitoring/sniffing

Ethernet MAC protocol: CSMA/CD

- MA (Multiple Access): multiple nodes are allowed simultaneous access
\rightarrow just send
- CS (Carrier Sense): can detect if some other node is using the link
\rightarrow rule: if busy, wait until channel is not busy
\rightarrow works well in small areas: why?
- CD (Collision Detection): can detect if collision due to concurrent transmission has occured
\rightarrow rule: if collision, retry later
\rightarrow key question: when is later?
\rightarrow collision detection: more difficult in wireless environments

Collision detection mechanism:

Bi-directional signal propagation
 \rightarrow terminator absorbs signal: prevent bounce back
 \rightarrow can hear different signal from one transmitted

Collision: 2 stations

\rightarrow while transmitting data frame, hears collided signal \rightarrow data frame cannot be too small

\rightarrow meet in the middle: best-case
\rightarrow why?

Worst-case collision scenario:

$\longrightarrow \tau$: one-way propagation delay

- sender needs to wait 2τ sec before detecting collision \rightarrow time for echo to bounce back
- for 2500 m length, 51.2μ s round-trip time (2τ)
- enforce $51.2 \mu \mathrm{~s}$ slot time
- at $10 \mathrm{Mbps}, 512$ bits: minimum frame size
\rightarrow assures collision detection
\rightarrow wireless collision detection: why more difficult?

Transmit at least 512 bits

$$
\longrightarrow 6+6+2+46+4=64 \mathrm{~B}=512 \text { bits }
$$

When to retry upon collision: use exponential backoff

1. Wait for random $0 \leq X \leq 51.2 \mu$ s before 1st retry
2. Two consecutive collisions: wait for random $0 \leq X \leq$ 102.4μ s before 2 nd retry
3. Three consecutive collisions: wait for random $0 \leq$ $X \leq 204.8 \mu$ s before 3rd retry
4. i consecutive collisions: wait for $0 \leq X \leq 2^{i-1} 51.2 \mu \mathrm{~s}$ before next attempt
5. Give up if $i>16$
\rightarrow a form of stop-and-wait
\rightarrow what's the ACK?
\rightarrow guaranteed reliability?
\rightarrow why exponential backoff?

CSMA/CD Throughput

\longrightarrow approximate analysis in simplified setting

Assumptions:

- time is slotted
\rightarrow slot duration: 2τ
- k hosts; each host transmits with probability p at every slot
\rightarrow transmission behavior among hosts independent
\rightarrow transmission behavior across slots independent

New performance metric: utilization (ϱ)
\longrightarrow fraction of total bandwidth utilized
$\longrightarrow \quad 0 \leq \varrho \leq 1$
\longrightarrow small ϱ : large wastage

In slotted CSMA/CD:
\longrightarrow fraction of usefully used slots
\longrightarrow what are "uselessly used" slots?

Ex.: snapshot of baseband channel over 10 time slots
\rightarrow blue: successfully transmitted frames
\rightarrow brown: collided frames
\rightarrow utilization ϱ ?

One more viewpoint:
\longrightarrow note: useful and useless "periods" alternate

In the long run,

$$
\varrho=\frac{E[\operatorname{good}]}{E[\mathrm{good}]+E[\mathrm{bad}]}
$$

\rightarrow avrg. length of adjacent "good" and "bad" periods
\rightarrow formula holds under mild conditions

Next: estimate $E[$ good $]$ and $E[$ bad $]$

Not difficult to show:

$$
\begin{aligned}
\varrho & =\frac{E[\text { good }]}{E[\text { good }]+E[\mathrm{bad}]} \\
& \approx \frac{1}{1+B L / F}
\end{aligned}
$$

where
B : bandwidth (bps)
L : length of wire (meters)
F : frame size (bits)

What does the formula say?

For example, if B is increased, what must be done to maintain high utilization?

Today: switched Ethernet

- not bus anymore but switch
\rightarrow contention moved from bus to "single point"
\rightarrow switch: a computer
- Ethernet frames are logically scheduled
\rightarrow buffering, who goes first (FIFO, priority)
- no more physical collision
\rightarrow instead: buffer overflow

Diagram of 4-port switch:

\rightarrow output buffered switch
\rightarrow switches: both input and output buffers
\rightarrow switching fabric: hardware
\rightarrow functions: pure hardware, firmware, processes in OS
\rightarrow e.g., Cisco's router OS: IOS (Internet OS)

Note: a switch has nothing to do with CSMA/CD
\rightarrow it's not a shared bus medium with physical collisions
\rightarrow what does "switched" Ethernet mean?

Issue of backward compatibility:

- Ethernet switch emulates CSMA/CD
\rightarrow interoperate with legacy systems
\rightarrow host's CSMA/CD NIC card cannot tell difference
\rightarrow as if connected to a bus
- upon buffer overflow: send collision signal
\rightarrow switch emulates collision
\rightarrow transparent to legacy NIC
\rightarrow facilitates incremental deployment

Internet: new technology must respect legacy
\rightarrow otherwise deployment is difficult
\rightarrow key requirement of any practical solution

Long distance Ethernet: e.g., 1000Base-LX
\longrightarrow what about length limit of CSMA/CD?
Medium-haul GigE/10GigE (802.3ae): 500m, 5km, 40km

- solution: disable CSMA/CD
\rightarrow switch-to-switch: disable at both ends
\rightarrow purely point-to-point link
\rightarrow backward compatibility: not an issue anymore
- flow control
\rightarrow send pause frame to prevent buffer overflow

QoS: IEEE 802.3p

\longrightarrow frame tagging conveys priority
\longrightarrow priority classes supported at switches
\longrightarrow useful for VoIP (voice-over-IP)

Note: today's Ethernet is a hybrid mix of switch, CSMA/CD, short- and long-distance LAN
\longrightarrow would not have been designed this way
\longrightarrow result of legacy-respecting incremental changes

