Ethernet

 \longrightarrow copper, fiber

Types (some just historical):

- 10Base2 (ThinNet): coax, segment length 200 m, 30 nodes/segment
- 10Base5 (ThickNet): coax, segment length 500 m, 100 nodes/segment
- 10Base-T: twisted pair, segment length 100 m, 1024 nodes/segment
- 100Base-T (Fast Ethernet): category 5 UTP, fiber (also 100VG-AnyLAN)
- \bullet Gigabit & 10 Gbps Ethernet: fiber, category 5 UTP
- 100 Gbps Ethernet

- single-homed vs. multi-homed
- unique 48-bit Ethernet address per NIC
- physical network: bus vs. hub vs. switch
 - \rightarrow very old vs. old vs. not-so-old
 - \rightarrow today: switched Ethernet

High-speed Ethernets have shorter network diameter

- \bullet 2500 m for 10 Mbps Ethernet
- 200 m for 100 Mbps Ethernet
- \bullet even shorter for 1 Gbps Ethernet
 - \rightarrow unless fully switched (later discussion)
 - \longrightarrow distance limitations: due to Ethernet protocol
 - \longrightarrow creates complications for long-haul
 - \longrightarrow e.g., tens, hundreds, or thousands of miles
 - \longrightarrow 1, 10, 100 Gbps: tier-1 backbone speeds
 - \longrightarrow also multiples of 1 and 10 Gbps

IEEE 802.3 Ethernet frame:

- \longrightarrow IEEE 802.2 LLC (Logical Link Control)
- \longrightarrow two Ethernet types co-exist (802.3 dominant)

Digital transmission of digital data:

 \rightarrow Ethernet uses baseband transmission

Using square waves to represent bits

- \rightarrow methods and issues
 - NRZ-L (non-return to zero, level)
 - NRZI (NRZ invert on ones)
 - Manchester (biphase or self-clocking codes)

Trade-offs:

- NRZ codes—long sequences of 0's (or 1's) causes synchronization problem; need extra control line (clock) or sensitive signalling equipment.
- Manchester codes—synchronization achieved through self-clocking; however, achieves only 50% efficiency vis-à-vis NRZ codes.

4B/5B code

Encode 4 bits of data using 5 bit code where the code word has at most one leading 0 and two trailing 0's.

 $0000 \leftrightarrow 11110, 0001 \leftrightarrow 01001,$ etc.

- \longrightarrow at most three consecutive 0's
- \longrightarrow efficiency: 80%

Encoding: Manchester

 \longrightarrow note: Ethernet is baseband

Addressing:

- 48 bit unique address
- point-to-point
- broadcast (all 1's)

Receiver: Ethernet NIC accepts frames with "relevant" address.

- accepts only own frame address
 - \rightarrow default
- accepts all frames: called promiscuous mode
 - \rightarrow can set with root privilege
 - \rightarrow useful for traffic monitoring/sniffing

Ethernet MAC protocol: CSMA/CD

- MA (Multiple Access): multiple nodes are allowed simultaneous access
 - \rightarrow just send
- CS (Carrier Sense): can detect if some other node is using the link
 - \rightarrow rule: if busy, wait until channel is not busy
 - \rightarrow works well in small areas: why?
- CD (Collision Detection): can detect if collision due to concurrent transmission has occured
 - \rightarrow rule: if collision, retry later
 - \rightarrow key question: when is later?
 - \rightarrow collision detection: more difficult in wireless environments

Collision detection mechanism:

Bi-directional signal propagation

 \rightarrow terminator absorbs signal: prevent bounce back

 \rightarrow can hear different signal from one transmitted

Collision: 2 stations

 \rightarrow while transmitting data frame, hears collided signal

 \rightarrow data frame cannot be too small

 \rightarrow meet in the middle: best-case \rightarrow why?

 $\rightarrow \tau$: one-way propagation delay

- sender needs to wait 2τ sec before detecting collision \rightarrow time for echo to bounce back
- for 2500 m length, 51.2 μ s round-trip time (2 τ)
- enforce 51.2 μ s slot time
- at 10 Mbps, 512 bits: minimum frame size
 - \rightarrow assures collision detection
 - \rightarrow wireless collision detection: why more difficult?

$$\rightarrow 6 + 6 + 2 + 46 + 4 = 64 \text{ B} = 512 \text{ bits}$$

When to retry upon collision: use exponential backoff

- 1. Wait for random $0 \le X \le 51.2 \ \mu s$ before 1st retry
- 2. Two consecutive collisions: wait for random $0 \le X \le$ 102.4 μ s before 2nd retry
- 3. Three consecutive collisions: wait for random 0 $\leq X \leq 204.8 \ \mu s$ before 3rd retry
- 2. *i* consecutive collisions: wait for $0 \le X \le 2^{i-1} 51.2 \ \mu s$ before next attempt
- 3. Give up if i > 16
- \rightarrow a form of stop-and-wait
- \rightarrow what's the ACK?
- \rightarrow guaranteed reliability?
- \rightarrow why exponential backoff?

CSMA/CD Throughput

 \longrightarrow approximate analysis in simplified setting

Assumptions:

- time is slotted
 - \rightarrow slot duration: 2τ
- k hosts; each host transmits with probability p at every slot
 - \rightarrow transmission behavior among hosts independent
 - \rightarrow transmission behavior across slots independent

New performance metric: utilization (ϱ)

- \longrightarrow fraction of total bandwidth utilized
- $\longrightarrow 0 \le \varrho \le 1$
- \longrightarrow small ϱ : large wastage

In slotted CSMA/CD:

- \longrightarrow fraction of usefully used slots
- \longrightarrow what are "uselessly used" slots?

Ex.: snapshot of baseband channel over 10 time slots

- \rightarrow blue: successfully transmitted frames
- \rightarrow brown: collided frames
- \rightarrow utilization ϱ ?

One more viewpoint:

 $\longrightarrow\,$ note: useful and useless "periods" alternate

In the long run,

$$\varrho = \frac{E[\text{good}]}{E[\text{good}] + E[\text{bad}]}$$

 \rightarrow avrg. length of adjacent "good" and "bad" periods \rightarrow formula holds under mild conditions

Next: estimate E[good] and E[bad]

Not difficult to show:

$$\rho = \frac{E[\text{good}]}{E[\text{good}] + E[\text{bad}]}$$
$$\approx \frac{1}{1 + BL/F}$$

where

- B: bandwidth (bps)
- L: length of wire (meters)
- F: frame size (bits)

What does the formula say?

For example, if B is increased, what must be done to maintain high utilization?

Today: switched Ethernet

- not bus anymore but switch
 - \rightarrow contention moved from bus to "single point"

 \rightarrow switch: a computer

- Ethernet frames are logically scheduled
 - \rightarrow buffering, who goes first (FIFO, priority)
- no more physical collision
 - \rightarrow instead: buffer overflow

- \rightarrow output buffered switch
- \rightarrow switches: both input and output buffers
- \rightarrow switching fabric: hardware
- \rightarrow functions: pure hardware, firmware, processes in OS
- \rightarrow e.g., Cisco's router OS: IOS (Internet OS)

Note: a switch has nothing to do with CSMA/CD \rightarrow it's not a shared bus medium with physical collisions \rightarrow what does "switched" Ethernet mean? Issue of backward compatibility:

- Ethernet switch emulates CSMA/CD
 - \rightarrow interoperate with legacy systems
 - \rightarrow host's CSMA/CD NIC card cannot tell difference
 - \rightarrow as if connected to a bus
- upon buffer overflow: send collision signal
 - \rightarrow switch emulates collision
 - \rightarrow transparent to legacy NIC
 - \rightarrow facilitates incremental deployment

Internet: new technology must respect legacy

- \rightarrow otherwise deployment is difficult
- \rightarrow key requirement of any practical solution

 \longrightarrow what about length limit of CSMA/CD?

Medium-haul GigE/10GigE (802.3ae): 500m, 5km, 40km

• solution: disable CSMA/CD

 \rightarrow switch-to-switch: disable at both ends

 \rightarrow purely point-to-point link

 \rightarrow backward compatibility: not an issue anymore

 \rightarrow send pause frame to prevent buffer overflow

[•] flow control

QoS: IEEE 802.3p

- \longrightarrow frame tagging conveys priority
- \longrightarrow priority classes supported at switches
- \longrightarrow useful for VoIP (voice-over-IP)

Note: today's Ethernet is a hybrid mix of switch, CSMA/CD, short- and long-distance LAN

- \longrightarrow would not have been designed this way
- \longrightarrow result of legacy-respecting incremental changes