
CS 422 Park

Link Layer: Basic Techniques

Data Transmission

Link speed unit: bps

−→ abstraction

−→ ignore carrier frequency, coding etc.

Simplest case: point-to-point link

−→ wired or wireless



CS 422 Park

Interested in completion time :

−→ time elapsed between sending/receiving first bit

−→ i.e., how long will it take?

• Single bit:

→ ≈ L/SOL (lower bound)

→ latency (or propagation delay)

→ optical fiber, wireless: exact

• Multiple, say S, bits:

→ ≈ L/SOL + S/B

→ latency + transmission time

Latency vs. transmission time: which dominates?

−→ a lot to send, a little to send, . . .

−→ satellite, Zigbee, WLAN, broadband WAN



CS 422 Park

Reliable Transmission

Main method: ARQ (Automatic Repeat reQuest)

−→ use retransmission

−→ used in both wired/wireless

• function duplication

→ link layer, transport layer, etc.

• alternative: FEC (forward error correction)

→ transmit redundant information

→ not assured

→ pros and cons?



CS 422 Park

ARQ: three components

• timer

• acknowledgment (ACK)

• retransmit

data

ACK

timer



CS 422 Park

Special case: stop-and-wait

Handle one packet (i.e., frame) at a time.

data

tim
eo

ut

time

ACK tim
eo

ut

time

data

tim
eo

ut

time

data

tim
eo

ut

time

ACK

data

data

ACK

data

ACK

data

ACK

ACK



CS 422 Park

Issue of RTT (Round-Trip Time) & timer management:

• what is proper value of timer?

→ RTT estimation

• easier for single link

→ RTT is more well-behaved

• more difficult for multi-hop path in internetwork

→ latency + queueing effect

A “good” thing about stop-and-wait:

−→ simple throughput formula



CS 422 Park

Stop-and-wait throughput (bps):

• RTT

• frame size (bits)

−→ throughput = frame size / RTT

Another important problem: not keeping the pipe full.

−→ delay-bandwidth product

−→ volume of data travelling on the link

High throughput: want to keep the pipe full



CS 422 Park

Ex.: Link BW 1.5 Mbps, 45 msec RTT

• if frame size 1 kB, then throughput:

→ 1024× 8/0.045 = 182 kbps

→ utilization: only 182 kbps/1500 kbps = 0.121

• note: delay-bandwidth product

→ 1.5 Mbps × 45 msec = 67.5 kb ≈ 8 kB

What happens to utilization if RTT increases to 90 msec?

What happens if bandwidth increases to 3 Mbps?

−→ how to reduce bandwidth wastage?



CS 422 Park

Sliding Window Protocol

−→ send block (i.e., window) of data

Issues:

• Shield application process from reliability manage-

ment chore

→ exported semantics: continuous data stream

→ simple app abstraction: e.g., read system call

• Both sender and receiver have limited buffer capacity

→ task: plug holes & flush buffer

Sender Receiver

1 2 3 4 5 3 4 5

Dropped

1 2



CS 422 Park

Simple solution when receiver has infinite buffer capacity:

• sender keeps sending at maximum speed

• receiver informs sender of holes

→ “I’m missing this and that”

→ called negative ACK

• sender retransmits missing frames

Drawbacks?

What about positive ACK?

−→ pros and cons



CS 422 Park

Sliding window operation with positive ACK:

SWS

LAR LFS

RWS

NFE LFA

Sender:

Receiver:

• SWS : Sender Window Size (sender buffer size)

• RWS : Receiver Window Size (receiver buffer size)

• LAR: Last ACK Received

• LFS : Last Frame Sent

• NFE : Next Frame Expected

• LFA: Last Frame Acceptable



CS 422 Park

Assign sequence numbers to frames.

−→ IDs

Maintain invariants:

• LFA− NFE + 1 ≤ RWS

• LFS− LAR + 1 ≤ SWS

Sender:

• Receive ACK with sequence number X

• Forwind LAR to X

• Flush buffer up to (but not including) LAR

• Send up to SWS− (LFS− LAR + 1) frames

• Update LFS



CS 422 Park

Receiver:

• Receive packet with sequence number Y

• Forwind to (new) first hole & update NFE

→ NFE need not be Y + 1

• Send cumulative ACK (i.e., NFE)

• Flush buffer up to (but not including) NFE to appli-

cation

• Update LFA← NFE + RWS− 1



CS 422 Park

Sequence number wrap-around problem:

SWS < (MaxSeqNum + 1)/2

−→ why?

−→ consider special case: stop-and-wait

−→ is sequence number needed?


