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Link Layer: Basic Techniques

Data Transmission

Link speed unit: bps

−→ abstraction

−→ ignore carrier frequency, coding etc.

Simplest case: point-to-point link

−→ wired or wireless
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Interested in completion time :

−→ time elapsed between sending/receiving first bit

−→ i.e., how long will it take?

• Single bit:

→ ≈ L/SOL (lower bound)

→ latency (or propagation delay)

→ optical fiber, wireless: exact

• Multiple, say S, bits:

→ ≈ L/SOL + S/B

→ latency + transmission time

Latency vs. transmission time: which dominates?

−→ a lot to send, a little to send, . . .

−→ satellite, Zigbee, WLAN, broadband WAN
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Reliable Transmission

Main method: ARQ (Automatic Repeat reQuest)

−→ use retransmission

−→ used in both wired/wireless

• function duplication

→ link layer, transport layer, etc.

• alternative: FEC (forward error correction)

→ transmit redundant information

→ not assured

→ pros and cons?
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ARQ: three components

• timer

• acknowledgment (ACK)

• retransmit

data

ACK

timer
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Special case: stop-and-wait

Handle one packet (i.e., frame) at a time.
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Issue of RTT (Round-Trip Time) & timer management:

• what is proper value of timer?

→ RTT estimation

• easier for single link

→ RTT is more well-behaved

• more difficult for multi-hop path in internetwork

→ latency + queueing effect

A “good” thing about stop-and-wait:

−→ simple throughput formula
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Stop-and-wait throughput (bps):

• RTT

• frame size (bits)

−→ throughput = frame size / RTT

Another important problem: not keeping the pipe full.

−→ delay-bandwidth product

−→ volume of data travelling on the link

High throughput: want to keep the pipe full
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Ex.: Link BW 1.5 Mbps, 45 msec RTT

• if frame size 1 kB, then throughput:

→ 1024× 8/0.045 = 182 kbps

→ utilization: only 182 kbps/1500 kbps = 0.121

• note: delay-bandwidth product

→ 1.5 Mbps × 45 msec = 67.5 kb ≈ 8 kB

What happens to utilization if RTT increases to 90 msec?

What happens if bandwidth increases to 3 Mbps?

−→ how to reduce bandwidth wastage?
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Sliding Window Protocol

−→ send block (i.e., window) of data

Issues:

• Shield application process from reliability manage-

ment chore

→ exported semantics: continuous data stream

→ simple app abstraction: e.g., read system call

• Both sender and receiver have limited buffer capacity

→ task: plug holes & flush buffer

Sender Receiver

1 2 3 4 5 3 4 5

Dropped

1 2
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Simple solution when receiver has infinite buffer capacity:

• sender keeps sending at maximum speed

• receiver informs sender of holes

→ “I’m missing this and that”

→ called negative ACK

• sender retransmits missing frames

Drawbacks?

What about positive ACK?

−→ pros and cons
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Sliding window operation with positive ACK:

SWS

LAR LFS

RWS

NFE LFA

Sender:

Receiver:

• SWS : Sender Window Size (sender buffer size)

• RWS : Receiver Window Size (receiver buffer size)

• LAR: Last ACK Received

• LFS : Last Frame Sent

• NFE : Next Frame Expected

• LFA: Last Frame Acceptable
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Assign sequence numbers to frames.

−→ IDs

Maintain invariants:

• LFA− NFE + 1 ≤ RWS

• LFS− LAR + 1 ≤ SWS

Sender:

• Receive ACK with sequence number X

• Forwind LAR to X

• Flush buffer up to (but not including) LAR

• Send up to SWS− (LFS− LAR + 1) frames

• Update LFS
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Receiver:

• Receive packet with sequence number Y

• Forwind to (new) first hole & update NFE

→ NFE need not be Y + 1

• Send cumulative ACK (i.e., NFE)

• Flush buffer up to (but not including) NFE to appli-

cation

• Update LFA← NFE + RWS− 1



CS 422 Park

Sequence number wrap-around problem:

SWS < (MaxSeqNum + 1)/2

−→ why?

−→ consider special case: stop-and-wait

−→ is sequence number needed?


