Today: switched Ethernet

- not shared bus anymore
 - \rightarrow every device connected by point-to-point link to switch
 - \rightarrow switch: a computer
 - \rightarrow with special hardware support to increase packet processing speed
- arriving Ethernet frames may be scheduled
 - \rightarrow buffering: who goes first (e.g., FIFO, priority)
- no more physical collision
 - \rightarrow frames don't collide anymore
 - \rightarrow frames arrive on separate point-to-point links connected to separate NICs: called ports on switches
 - \rightarrow instead of collision: buffer overflow

- \rightarrow CS, MA, CD are protocols designed for shared buses
- \rightarrow but CSMA/CD still used in switched Ethernet
- \rightarrow why?

Real-world importance of backward compatibility:

- \bullet legacy Ethernet NICs speak CSMA/CD
- switched Ethernet introduced in the early-to-mid 1990s must interoperate with legacy NICs
- otherwise can't sell in the real world
 - \rightarrow critical constraint of new networking technologies
 - \rightarrow not just networking though

How to achieve backward compatibility:

- \rightarrow Ethernet switch emulates CSMA/CD
 - emulate CSMA/CD protocol—even though there is no bus sharing and collision
 - goal: legacy CSMA/CD NIC cannot tell difference
 - \rightarrow switch or bus
 - \rightarrow as if connected to a bus
 - meaning of collision: upon buffer overflow, send collision signal
 - \rightarrow jam signal
 - legacy NIC responds with retransmit and exponential backoff

End result: can connect many devices without suffering heavy collision of shared buses Long distance Ethernet: e.g., 1000Base-LX

 \longrightarrow what about length limit of CSMA/CD?

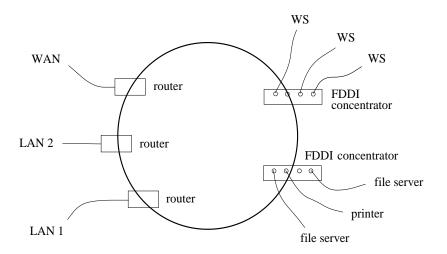
Medium-haul GigE/10GigE (802.3ae): 500m, 5km, 40km

• solution: disable CSMA/CD

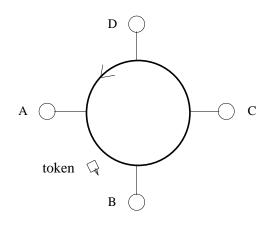
 \rightarrow switch-to-switch: disable at both ends

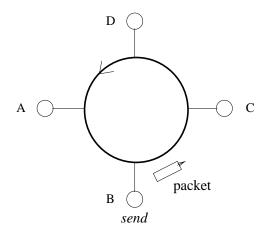
 \rightarrow purely point-to-point link

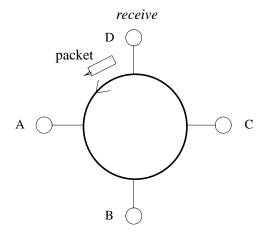
- \rightarrow backward compatibility: not an issue anymore
- flow control
 - \rightarrow send pause frame to prevent buffer overflow
- called carrier or long-haul Ethernet

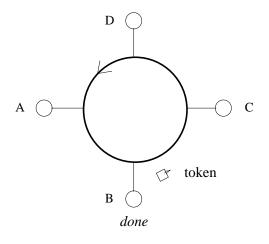

Today: Ethernet is both local-area and metropolitan/widearea network technology \longrightarrow token ring architecture

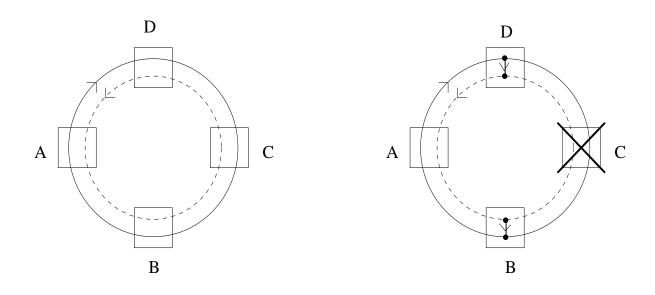
High-bandwidth extension of IBM 4 Mbps and 16 Mbps IEEE 802.5 token ring standard.

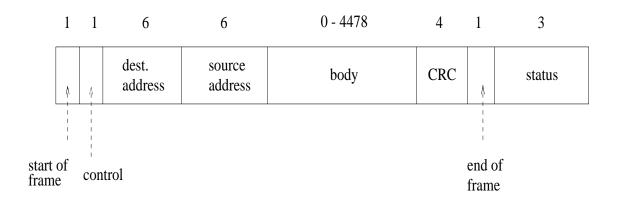

 \rightarrow 100 Mbps bandwidth


Used as high-bandwidth campus/city backbone.


 \longrightarrow metropolitan/campus distance: MAN







Fault-tolerance:

- DAS (dual attachment station)
- SAS (single attachment station)

- frame size < 4500 B
- 4B/5B encoding
- synchronous/asynchronous data
- $\bullet~2~{\rm km}$ inter-station distance
- 200 km diameter (multimode fiber); 100 km circumference

Performance issues: fairness and efficiency

- TRT (token rotation time)
- THT (token holding time)

 $TRT = no. of nodes \times (THT + link latency)$

To increase efficiency: increase THT

- \longrightarrow let station send as much as it needs
- \longrightarrow same as frame size \uparrow
- \longrightarrow THT $\uparrow \implies$ utilization $\rho \uparrow$

To increase fairness: limit THT

 \longrightarrow limit station's one-time sending of data

To facilitate fairness: introduce TTRT (target token rotation time).

THT determining factor:

- prioritized frames: synchronous/asynchronous
 - \rightarrow synchronous: voice
- synchronous frames always get sent
- if TRT > TTRT, then late; don't send asynchronous data
- if TRT \leq TTRT, then early; send asynchronous data

How to set TTRT?

- \longrightarrow token claim process
- \longrightarrow initiate when needed (e.g., start-up)
- each station submits claim frame containing TTRT bid
- smaller TTRT bid overrides higher TTRT bids
- winner: smallest bid value when claim frame has made full circle
 - \rightarrow called leader election

At the end of the day, consistent TTRT value among all stations.

 \rightarrow called consensus problem

Compare against Ethernet's CSMA/CD

- \longrightarrow round-robin reservation
- \longrightarrow absence of MA and collision
- \longrightarrow determinism vs. indeterminism
- \longrightarrow still: imperfect QoS assurance