Link Layer: Wired Media

Multi-Access Communication

Bandwidth sharing: two approaches

- contention-free
 - \rightarrow e.g., TDMA, FDMA, mixture of FDMA + TDMA, CDMA, SDMA, token ring
 - \rightarrow used in telephony and broadband data networks
- contention-based
 - \rightarrow e.g., CSMA/CD, CSMA/CA
 - \rightarrow used in Ethernet, WLAN, RFID

Also called MAC (medium access control)

 \rightarrow 48-bit NIC address: MAC address

Contention-free MAC:

- \rightarrow emphasis on orderliness
- \rightarrow how to keep discussion orderly: moderator
- \rightarrow prior allocation of shared resources (e.g., FDMA, TDMA, CDMA)
- \rightarrow centralized

Contention-based MAC:

- \rightarrow single carrier frequency shared by many
- \rightarrow no moderator
- \rightarrow much less orderly
- \rightarrow decentralized
- \rightarrow interference between conversations
- \rightarrow simultaneous access: collision

Park

Basic features:

- when NIC has data to send, just send
 - \rightarrow called multiple access (MA)
 - \rightarrow only send if link seems idle: carrier sense (CS)
- if two or more users send at the same time, data can become junk
 - \rightarrow interference makes signal too weak to detect
 - \rightarrow interference causes bit flips
 - \rightarrow collision: at receiver NIC

Collision need not always cause bit flips

- \rightarrow if two packets collide and one packet has much stronger signal strength than the other: stronger packet may be successfully decoded
- \rightarrow called capture effect
- \rightarrow "survival of the strongest"

Much less orderly than contention-free MACs:

- \rightarrow used in real systems?
- \rightarrow yes!
- \rightarrow pure MA (not even CS): ALOHA (1970s)
- \rightarrow packet network connecting Univ. of Hawaii island campuses
- \rightarrow deployed system solving real-world problem
- $\rightarrow {\sim}30$ years before boom of wireless data networks
- \rightarrow later adopted by Ethernet, and today, WLANs
- \rightarrow visionary work by Norman Abramson

Question: why not use carrier sense (CS)?

Additional features:

- NIC can detect if someone else is using the channel
 - \rightarrow carrier sense (CS)
 - \rightarrow rule: if someone else talks, don't talk
 - \rightarrow imposes gentlemanly (i.e., cooperative) behavior
 - \rightarrow not always practically feasible
 - \rightarrow where else does it not make sense?
- NIC can detect if collision has occurred
 - \rightarrow called collision detection (CD)
 - \rightarrow not always feasible: especially wireless

In real systems:

- \longrightarrow Ethernet: MA, CS, CD
- \longrightarrow WLAN: MA, CS

Why not just use TDMA, FDMA, or CDMA?

Benefits of contention-based MAC:

- when not too many users, faster response time
 - \rightarrow minimal coordination overhead
 - \rightarrow e.g., in TDMA need to request and reserve slots
- \bullet decentralized
 - \rightarrow minimal configuration overhead
 - \rightarrow to join: just send
 - \rightarrow except for security concerns (e.g., Purdue's PAL)
 - \rightarrow a good idea?

Drawbacks of contention-based MAC:

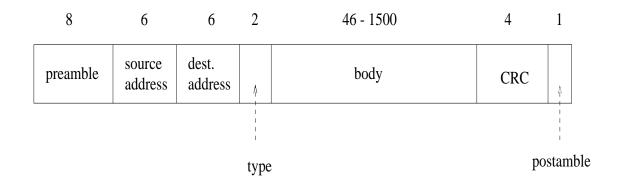
- when many users share, degraded throughput \rightarrow collision wastes bandwidth
- lack of QoS (quality of service) assurances
 - \rightarrow "you get what you get"
 - \rightarrow called best effort
 - \rightarrow problematic for real-time traffic (e.g., VoIP, video conferencing)
 - \rightarrow IEEE 802.11 WLAN standard has provisions to support telephony: not used in practice

When to use what?

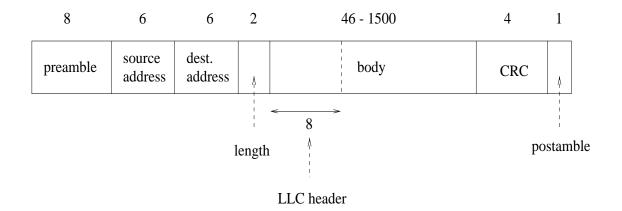
 \longrightarrow contention-free vs. contention-based

Ethernet

 \longrightarrow copper, fiber


Types (some just historical):

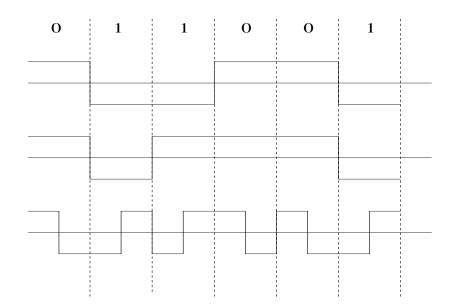
- 10Base2 (ThinNet): coax, segment length 200 m, 30 nodes/segment
- 10Base5 (ThickNet): coax, segment length 500 m, 100 nodes/segment
- 10Base-T: twisted pair, segment length 100 m, 1024 nodes/segment
- 100Base-T (Fast Ethernet): category 5 UTP, fiber (also 100VG-AnyLAN)
- Gigabit & 10 Gbps Ethernet: fiber, category 5 or better
- 40, 100 Gbps Ethernet


 \rightarrow mainly carrier grade

High-speed Ethernets have shorter network diameter

- 2500 m for 10 Mbps Ethernet
- 200 m for 100 Mbps Ethernet
- \bullet even shorter for 1 Gbps Ethernet
 - \rightarrow unless fully switched (later discussion)
 - \rightarrow distance limitations: due to Ethernet protocol

IEEE 802.3 Ethernet frame:



 \longrightarrow IEEE 802.2 LLC (Logical Link Control) \longrightarrow two Ethernet types co-exist (DIX dominant) Traditional Ethernet:

- \rightarrow digital transmission of digital data
- \rightarrow dominant today: analog transmission of digital data

Using square waves to represent bits

- NRZ-L (non-return to zero, level)
- NRZI (NRZ invert on ones)
- Manchester (biphase or self-clocking codes)

- NRZ codes—long sequences of 0's (or 1's) causes synchronization problem
- Manchester codes—synchronization achieved through self-clocking
 - \rightarrow penalty: 50% utilization
 - $\rightarrow 1/2$ bit per baud

4B/5B code

Encode 4 bits of data using 5 bit code where the code word has at most one leading 0 and two trailing 0's.

 $0000 \leftrightarrow 11110, 0001 \leftrightarrow 01001,$ etc.

- \longrightarrow at most three consecutive 0's
- \longrightarrow efficiency: 80%

Traditional Ethernet encoding: Manchester

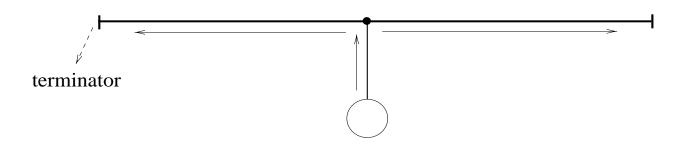
Addressing:

- 48 bit unique address
- broadcast address: all 1's

Receiver: Ethernet NIC accepts frames with matching destination address.

- default
- accepts all frames
 - \rightarrow called promiscuous mode
 - \rightarrow can set with root privilege
 - \rightarrow useful for traffic monitoring/sniffing

Ethernet MAC protocol: CSMA/CD

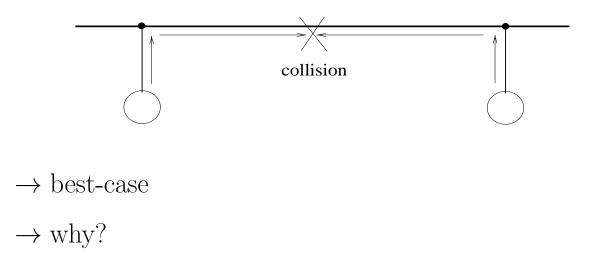

- MA (Multiple Access): multiple nodes are allowed simultaneous access
 - \rightarrow just send
- CS (Carrier Sense): can detect if some other node is using the link

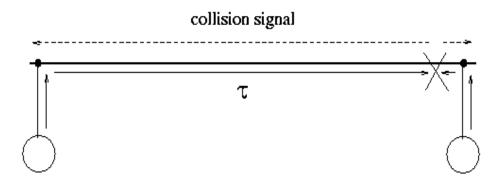
 \rightarrow rule: if busy, wait until channel is not busy

- CD (Collision Detection): can detect frame collision due to simultaneous transmissions
 - \rightarrow rule: if collision, retry later
 - \rightarrow key question: when is later?

Collision detection mechanism:

Bi-directional signal propagation

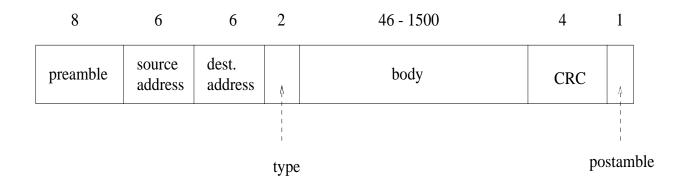



- \rightarrow terminator absorbs signal: prevent bounce back
- \rightarrow recall PSO lab: TDR
- \rightarrow collision and collision detection: applies to thicknet/thinnet (old) Ethernet
- \rightarrow today: switched Ethernet
- \rightarrow CSMA/CD maintained to backward compatibility

- Collision even: 2 stations
- \rightarrow could be 3 or more
- \rightarrow while transmitting data frame, hears collided signal
- \rightarrow data frame cannot be too small
- \rightarrow otherwise: data transmission completed before collision is detected

Example: collision scenario

 \rightarrow meet in the middle



- τ : one-way propagation delay
- sender needs to wait 2τ sec before detecting collision \rightarrow time for echo to bounce back
- for 2500 m length, 51.2 μ s round-trip time (2 τ)
- enforce 51.2 μ s slot time
- at 10 Mbps, 512 bits: minimum frame size
 - \rightarrow assures collision detection

Transmit at least 512 bits

 $\rightarrow 6 + 6 + 2 + 46 + 4 = 64$ B = 512 bits

 \rightarrow influences minimum payload size of packet

Question: to achieve collision detection (CD) in 100 Mbps Ethernet, what must happen? When to retry upon collision: use exponential backoff

Retransmission protocol:

- 1. Wait for random $0 \le X \le 51.2 \ \mu s$ before 1st retry
- 2. Two consecutive collisions: wait for random $0 \le X \le$ 102.4 μ s before 2nd retry
- 3. Three consecutive collisions: wait for random 0 \leq $X \leq$ 204.8 $\mu {\rm s}$ before 3rd retry
- 4. *i* consecutive collisions: wait for $0 \le X \le 2^{i-1} 51.2 \ \mu s$ before next attempt
- 5. Give up if i > 16
- \rightarrow a form of stop-and-wait (ARQ)
- \rightarrow what's the ACK?
- \rightarrow guaranteed reliability?
- \rightarrow why exponential backoff?