CS 422 Park

Method D:

At +1) <= A(t) +e(Q = Q(t)) — BAL) —)
where € > 0 and 8 > 0 are fixed parameters
odd looking modification to Method C
additional term —B(\(t) —)

what’s going on?

AN

does it work?

CS 422

Park

With e = 0.2 and 5 = 0.5:

250

200

150

Load

100

50

o

O 5 10 15 20 25 30 35

I_Ioacli E\/IolultionI
Target

Time

40 45

50

30

25

20

15

Lambda

10

I Larlnbdla Elvolultiorll

(o]

5 10 15 20 25 30
Time

35 40

as

50

CS 422 Park

With £ = 0.5 and 8 = 1.1:

250 T T T T T T T T
Load Evolution ————
Target --———-—---
200 |- —
150 - —
=]
<
o
—
100
50 —
O 1 1 1 1 1 1 1 1 1
O 5 10 15 20 25 30 35 40 45 50
Time
30 T T T T T T T T T
Lambda Evolution
Gamma --------
25 —
20 —
<
=
= 15 —
S
—
10
5 p—
O 1 1 1 1 1 1 1 1 1

(@) 5 10 15 20 25 30 35 40 45 50
Time

CS 422

Park

With e = 0.1 and g = 1.0:

250

200

150

Load

100

50

o

I_Ioacli E\/IolultionI
Target

O 5 10 15 20 25 30 35 40 45

Time

50

30

25

Lambda

ILarlnbdla Elvolultiorll
Gamma

5 10 15 20 25 30 35
Time

40 as

50

CS 422 Park

Remarks:

e Method D has desired behavior

e [s superior to Methods A, B, and C

e No unbounded oscillation

e In fact, dampening and convergence to desired state

— converges to target operating point (Q*,y)
— called asymptotically stable

— why?

CS 422 Park

TCP congestion control

Recall:

EffectiveWindow = MaxWindow —
(LastByteSent — LastByteAcked)

where

MaxWindow =

min{ AdvertisedWindow, CongestionWindow }

Key question: how to set CongestionWindow which, in
turn, affects ARQ’s sending rate?

— linear increase/exponential decrease

— AIMD

— method B

CS 422 Park

TCP congestion control components:

(i) Congestion avoidance

— linear increase/exponential decrease

— additive increase/exponential decrease (AIMD)
As in Method B, increase CongestionWindow linearly,
but decrease exponentially
Upon receiving ACK:

CongestionWindow <— CongestionWindow + 1

Upon timeout:

CongestionWindow < CongestionWindow /2

But is it correct. . .

CS 422 Park

“Linear increase’ time diagram:

Sender Recelver

Al

VU

i

|
|

I
~*}f.:

|
ﬂ

i
!
|
|

16

/

time time

— results in exponential increase

CS 422 Park

What we want:

Sender Recelver
; 1 »
RTT - /
, >
3)><
4 =

A‘l

time time

— increase by 1 every window

CS 422 Park

Thus, linear increase update:

CongestionWindow <— CongestionWindow
+ (1 / CongestionWindow)

Upon timeout and exponential backoft,

SlowStartThreshold < CongestionWindow /2

CS 422 Park

(ii) Slow Start
Reset CongestionWindow to 1

Perform exponential increase
CongestionWindow <— CongestionWindow + 1

e Until timeout at start of connection
— rapidly probe for available bandwidth

e Until CongestionWindow hits SlowStartThreshold
following Congestion Avoidance

— rapidly climb to safe level

— “slow” 1s a misnomer

— exponential increase is super-fast

CS 422 Park

Basic dynamics:
—— after connection set-up

—— before connection tear-down

connection start timeout SlowStartThreshold timeout

Slow Start — Slow Start — Congestion Avoidance — Slow Start

r epeat

—— most TCP transfers are small
—— small files “dominate” Internet TCP connections

—— most TCP flows don’t escape Slow Start

CS 422 Park
CongestionWindow evolution:
— relevant for larger flows
CongestionWindow
ti meout
ti meout
”””””””””” ti meout
sst hresh
sst hresh
sst hresh

/

/

Events (ACK or timeout)

CS 422 Park

(iii) Exponential timer backoff

TimeQOut < 2 - TimeOut if retransmit

(iv) Fast Retransmit

Upon receiving three duplicate ACKs:
e Transmit next expected segment
— segment indicated by ACK value

e Perform exponential backoff and commence Slow Start

— three duplicate ACKs: likely segment is lost

—— react before timeout occurs

TCP Tahoe: features (i)-(iv)

CS 422 Park

(v) Fast Recovery

Upon Fast Retransmit:
e Skip Slow Start and commence Congestion Avoidance
— dup ACKSs: likely spurious loss

e Insert “inflationary” phase just before Congestion Avoid-
ance

CS 422 Park

Given sawtooth behavior of TCP’s linear increase/exponential

backoft:

Why use exponential backoftf and not Method D?

e For multimedia streaming (e.g., pseudo real-time), AIMD
(Method B) is not appropriate

— use Method D

e For unimodal case—throughput decreases when sys-
tem load is excessive—story is more complicated

— asymmetry in control law needed for stability

CS 422 Park

Congestion control and selfishness

— to be or not to be selfish . ..

— John von Neumann, John Nash, ...

Ex.: “tragedy of commons,” Garrett Hardin, '68

Throughput

__ Congestion

Offered Load

e if everyone acts selfishly, no one wins
— in fact, everyone loses

e can this be prevented?

CS 422 Park

Ex.: Prisoner’s Dilemma game
— formalized by Tucker in 1950
— “cold war”

e both cooperate (i.e., stay mum): 1 year each
e both selfish (i.e., rat on the other): 5 years each
e one cooperative/one selfish: 9 vs. 0 years

Bob
C N

C 5,5 1,9

Alice

— payoff matrix

— what would “rational” prisoners do?

CS 422 Park

When cast as congestion control game:

Bob
C N

C 5,5 1,9

Alice

Alice and Bob share network bandwidth
(a,b): throughput (Mbps) achieved by Alice/Bob

upon congestion: back off or escalate?

L

equivalent to Prisoner’s dilemma

CS 422 Park

Rational: in the sense of seeking selfish gain
both choose strategy “N”
called Nash equilibrium

note: stable state

L

why: strategy “N” dominates strategy “C”

CS 422

Park

5 regular (cooperative) TCP flows:

—— share 11 Mbps WLAN bottleneck link

Throughput (Mb/s)

Throughput (Mb/s)

15

25

Flow 1-5: cooperative

05 /1

50 100 150
Time (sec)

Flow 1-5: cooperative

200

15 r

05

Flow ID

CS 422 Park

4 regular (cooperative) TCP flows and 1 noncooperative

TCP flow:

— same benchmark set-up

Flow 1-4: cooperative Flow 5: noncooperative

2 r
Flow5 —<—
_15¢
0
o)
=
g 1
K=
[=2]
>
<)
e N
= R
05 |’
O 1 1 1
0 50 100 150 200
Time (sec)
Flow 1-4: cooperative Flow 5: noncooperative
25
2 L
15

Throughput (Mb/s)

i

Flow ID

