CS 422 Park

Method D:

At +1) <= A(t) +e(Q = Q(t)) — BAL) — )
where € > 0 and 8 > 0 are fixed parameters
odd looking modification to Method C
additional term —B(\(t) — )

what’s going on?

AN

does it work?
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With e = 0.2 and 5 = 0.5:
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With £ = 0.5 and 8 = 1.1:
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With e = 0.1 and g = 1.0:
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Remarks:

e Method D has desired behavior

e [s superior to Methods A, B, and C

e No unbounded oscillation

e In fact, dampening and convergence to desired state

— converges to target operating point (Q*,y)
— called asymptotically stable

— why?
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TCP congestion control

Recall:

EffectiveWindow = MaxWindow —
(LastByteSent — LastByteAcked)

where

MaxWindow =

min{ AdvertisedWindow, CongestionWindow }

Key question: how to set CongestionWindow which, in
turn, affects ARQ’s sending rate?

— linear increase/exponential decrease

— AIMD

— method B
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TCP congestion control components:

(i) Congestion avoidance

— linear increase/exponential decrease

— additive increase/exponential decrease (AIMD)
As in Method B, increase CongestionWindow linearly,
but decrease exponentially
Upon receiving ACK:

CongestionWindow <— CongestionWindow + 1

Upon timeout:

CongestionWindow < CongestionWindow /2

But is it correct. . .
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“Linear increase’ time diagram:
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What we want:

Sender Recelver
; 1 »
RTT - /
, >
3 )><
4 =

A‘l

time time

— increase by 1 every window
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Thus, linear increase update:

CongestionWindow <— CongestionWindow
+ (1 / CongestionWindow)

Upon timeout and exponential backoft,

SlowStartThreshold < CongestionWindow /2
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(ii) Slow Start
Reset CongestionWindow to 1

Perform exponential increase
CongestionWindow <— CongestionWindow + 1

e Until timeout at start of connection
— rapidly probe for available bandwidth

e Until CongestionWindow hits SlowStartThreshold
following Congestion Avoidance

— rapidly climb to safe level

—  “slow” 1s a misnomer

— exponential increase is super-fast
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Basic dynamics:
—— after connection set-up

——  before connection tear-down

connection start timeout SlowStartThreshold timeout

Slow Start — Slow Start — Congestion Avoidance — Slow Start

r epeat

—— most TCP transfers are small
—— small files “dominate” Internet TCP connections

—— most TCP flows don’t escape Slow Start
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CongestionWindow evolution:
— relevant for larger flows
CongestionWindow
ti meout
ti meout
”””””””””” ti meout
sst hresh
sst hresh
sst hresh

/

/

Events (ACK or timeout)
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(iii) Exponential timer backoff

TimeQOut < 2 - TimeOut if retransmit

(iv) Fast Retransmit

Upon receiving three duplicate ACKs:
e Transmit next expected segment
— segment indicated by ACK value

e Perform exponential backoff and commence Slow Start

— three duplicate ACKs: likely segment is lost

—— react before timeout occurs

TCP Tahoe: features (i)-(iv)
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(v) Fast Recovery

Upon Fast Retransmit:
e Skip Slow Start and commence Congestion Avoidance
— dup ACKSs: likely spurious loss

e Insert “inflationary” phase just before Congestion Avoid-
ance
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Given sawtooth behavior of TCP’s linear increase/exponential

backoft:

Why use exponential backoftf and not Method D?

e For multimedia streaming (e.g., pseudo real-time), AIMD
(Method B) is not appropriate

— use Method D

e For unimodal case—throughput decreases when sys-
tem load is excessive—story is more complicated

— asymmetry in control law needed for stability
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Congestion control and selfishness

— to be or not to be selfish . ..

— John von Neumann, John Nash, ...

Ex.: “tragedy of commons,” Garrett Hardin, '68

Throughput

__ Congestion

Offered Load

e if everyone acts selfishly, no one wins
— in fact, everyone loses

e can this be prevented?
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Ex.: Prisoner’s Dilemma game
— formalized by Tucker in 1950
—  “cold war”

e both cooperate (i.e., stay mum): 1 year each
e both selfish (i.e., rat on the other): 5 years each
e one cooperative/one selfish: 9 vs. 0 years

Bob
C N

C 5,5 1,9

Alice

— payoff matrix

— what would “rational” prisoners do?
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When cast as congestion control game:

Bob
C N

C 5,5 1,9

Alice

Alice and Bob share network bandwidth
(a,b): throughput (Mbps) achieved by Alice/Bob

upon congestion: back off or escalate?

L

equivalent to Prisoner’s dilemma
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Rational: in the sense of seeking selfish gain
both choose strategy “N”
called Nash equilibrium

note: stable state

L

why: strategy “N” dominates strategy “C”
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5 regular (cooperative) TCP flows:

—— share 11 Mbps WLAN bottleneck link
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4 regular (cooperative) TCP flows and 1 noncooperative

TCP flow:

— same benchmark set-up

Flow 1-4: cooperative  Flow 5: noncooperative
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