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Method D:

λ(t + 1)← λ(t) + ε(Q∗ −Q(t))− β(λ(t)− γ)

where ε > 0 and β > 0 are fixed parameters

−→ odd looking modification to Method C

−→ additional term −β(λ(t)− γ)

−→ what’s going on?

−→ does it work?
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With ε = 0.2 and β = 0.5:

0

50

100

150

200

250

0 5 10 15 20 25 30 35 40 45 50

Lo
ad

Time

Load Evolution
Target

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40 45 50

La
mb

da

Time

Lambda Evolution
Gamma



CS 422 Park

With ε = 0.5 and β = 1.1:
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With ε = 0.1 and β = 1.0:
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Remarks:

• Method D has desired behavior

• Is superior to Methods A, B, and C

• No unbounded oscillation

• In fact, dampening and convergence to desired state

→ converges to target operating point (Q∗, γ)

→ called asymptotically stable

→ why?
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TCP congestion control

Recall:

EffectiveWindow = MaxWindow−
(LastByteSent− LastByteAcked)

where

MaxWindow =

min{ AdvertisedWindow, CongestionWindow }

Key question: how to set CongestionWindow which, in

turn, affects ARQ’s sending rate?

−→ linear increase/exponential decrease

−→ AIMD

−→ method B
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TCP congestion control components:

(i) Congestion avoidance

−→ linear increase/exponential decrease

−→ additive increase/exponential decrease (AIMD)

As in Method B, increase CongestionWindow linearly,

but decrease exponentially

Upon receiving ACK:

CongestionWindow ← CongestionWindow + 1

Upon timeout:

CongestionWindow ← CongestionWindow / 2

But is it correct. . .
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“Linear increase” time diagram:
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What we want:
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Thus, linear increase update:

CongestionWindow ← CongestionWindow

+ (1 / CongestionWindow)

Upon timeout and exponential backoff,

SlowStartThreshold ← CongestionWindow / 2
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(ii) Slow Start

Reset CongestionWindow to 1

Perform exponential increase

CongestionWindow ← CongestionWindow + 1

• Until timeout at start of connection

→ rapidly probe for available bandwidth

• Until CongestionWindow hits SlowStartThreshold
following Congestion Avoidance

→ rapidly climb to safe level

−→ “slow” is a misnomer

−→ exponential increase is super-fast
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Basic dynamics:

−→ after connection set-up

−→ before connection tear-down

Slow Start

connection start

Slow Start

timeout

Congestion Avoidance Slow Start

timeout

repeat

SlowStartThreshold

−→ most TCP transfers are small

−→ small files “dominate” Internet TCP connections

−→ most TCP flows don’t escape Slow Start
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CongestionWindow evolution:

−→ relevant for larger flows

CongestionWindow

Events (ACK or timeout)

timeout

timeout

timeout

ssthresh

ssthresh
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(iii) Exponential timer backoff

TimeOut← 2 · TimeOut if retransmit

(iv) Fast Retransmit

Upon receiving three duplicate ACKs:

• Transmit next expected segment

→ segment indicated by ACK value

• Perform exponential backoff and commence Slow Start

−→ three duplicate ACKs: likely segment is lost

−→ react before timeout occurs

TCP Tahoe: features (i)-(iv)
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(v) Fast Recovery

Upon Fast Retransmit:

• Skip Slow Start and commence Congestion Avoidance

→ dup ACKs: likely spurious loss

• Insert “inflationary” phase just before Congestion Avoid-
ance
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Given sawtooth behavior of TCP’s linear increase/exponential

backoff:

Why use exponential backoff and not Method D?

• For multimedia streaming (e.g., pseudo real-time), AIMD

(Method B) is not appropriate

→ use Method D

• For unimodal case—throughput decreases when sys-

tem load is excessive—story is more complicated

→ asymmetry in control law needed for stability
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Congestion control and selfishness

−→ to be or not to be selfish . . .

−→ John von Neumann, John Nash, . . .

Ex.: “tragedy of commons,” Garrett Hardin, ’68

Offered Load

Throughput

Congestion

• if everyone acts selfishly, no one wins

→ in fact, everyone loses

• can this be prevented?
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Ex.: Prisoner’s Dilemma game

−→ formalized by Tucker in 1950

−→ “cold war”

• both cooperate (i.e., stay mum): 1 year each

• both selfish (i.e., rat on the other): 5 years each

• one cooperative/one selfish: 9 vs. 0 years

C

N

C N

A
lic

e

Bob

5, 5 1, 9

9, 1 3, 3

−→ payoff matrix

−→ what would “rational” prisoners do?
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When cast as congestion control game:

C

N

C N
A

lic
e

Bob

5, 5 1, 9

9, 1 3, 3

−→ Alice and Bob share network bandwidth

−→ (a, b): throughput (Mbps) achieved by Alice/Bob

−→ upon congestion: back off or escalate?

−→ equivalent to Prisoner’s dilemma
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Rational: in the sense of seeking selfish gain

−→ both choose strategy “N”

−→ called Nash equilibrium

−→ note: stable state

−→ why: strategy “N” dominates strategy “C”
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5 regular (cooperative) TCP flows:

−→ share 11 Mbps WLAN bottleneck link
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4 regular (cooperative) TCP flows and 1 noncooperative

TCP flow:

−→ same benchmark set-up
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