
CS 422 Park

TCP congestion control

Recall:

EffectiveWindow = MaxWindow−
(LastByteSent− LastByteAcked)

where

MaxWindow =

min{ AdvertisedWindow, CongestionWindow }

Key question: how to set CongestionWindow which, in

turn, affects ARQ’s sending rate?

−→ linear increase/exponential decrease

−→ AIMD



CS 422 Park

TCP congestion control components:

(i) Congestion avoidance

−→ linear increase/exponential decrease

−→ additive increase/exponential decrease (AIMD)

As in Method B, increase CongestionWindow linearly,

but decrease exponentially

Upon receiving ACK:

CongestionWindow ← CongestionWindow + 1

Upon timeout:

CongestionWindow ← CongestionWindow / 2

But is it correct. . .



CS 422 Park

“Linear increase” time diagram:

Sender Receiver

time

RTT

time

2

4

1

8

16

−→ results in exponential increase



CS 422 Park

What we want:

Sender Receiver

time

RTT

time

2

1

3

4

5

−→ increase by 1 every window



CS 422 Park

Thus, linear increase update:

CongestionWindow ← CongestionWindow

+ (1 / CongestionWindow)

Upon timeout and exponential backoff,

SlowStartThreshold ← CongestionWindow / 2



CS 422 Park

(ii) Slow Start

Reset CongestionWindow to 1

Perform exponential increase

CongestionWindow ← CongestionWindow + 1

• Until timeout at start of connection

→ rapidly probe for available bandwidth

• Until CongestionWindow hits SlowStartThreshold

following Congestion Avoidance

→ rapidly climb to safe level

−→ “slow” is a misnomer

−→ exponential increase is super-fast



CS 422 Park

Basic dynamics:

−→ after connection set-up

−→ before connection tear-down

Slow Start

connection start

Slow Start

timeout

Congestion Avoidance Slow Start

timeout

repeat

SlowStartThreshold



CS 422 Park

CongestionWindow evolution:

CongestionWindow

Events (ACK or timeout)

timeout

timeout

timeout

ssthresh

ssthresh
ssthresh

−→ what happens if receiver window size hits max?

−→ DOE, supercomputing centers, etc.



CS 422 Park

(iii) Exponential timer backoff

TimeOut← 2 · TimeOut if retransmit

(iv) Fast Retransmit

Upon receiving three duplicate ACKs:

• Transmit next expected segment

→ segment indicated by ACK value

• Perform exponential backoff and commence Slow Start

−→ three duplicate ACKs: likely segment is lost

−→ react before timeout occurs

TCP Tahoe: features (i)-(iv)



CS 422 Park

(v) Fast Recovery

Upon Fast Retransmit:

• Skip Slow Start and commence Congestion Avoidance

→ dup ACKs: likely spurious loss

• Insert “inflationary” phase just before Congestion Avoid-

ance

Inflationary phase:

• SlowStartThreshold← CongestionWindow / 2

• CongestionWindow← SlowStartThreshold + 3

• On each additional duplicate ACK, increment

CongestionWindow

• On first non-dup ACK, commence Congestion Avoid-

ance

CongestionWindow← SlowStartThreshold



CS 422 Park

TCP Reno: features (i)-(v)

−→ pre-dominant form

Many more versions of TCP:

−→ NewReno w/ SACK, w/o SACK, Vegas, etc.

−→ wireless, ECN, multiple time scale

−→ mixed verdict; pros/cons



CS 422 Park

Given sawtooth behavior of TCP’s linear increase/exponential

backoff:

Why use exponential backoff and not Method D?

• For multimedia streaming (e.g., pseudo real-time), AIMD

(Method B) is not appropriate

→ use Method D

• For unimodal case—throughput decreases when sys-

tem load is excessive—story is more complicated

→ asymmetry in control law needed for stability


