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TCP congestion control

Recall:

EffectiveWindow = MaxWindow−
(LastByteSent− LastByteAcked)

where

MaxWindow =

min{ AdvertisedWindow, CongestionWindow }

Key question: how to set CongestionWindow which, in

turn, affects ARQ’s sending rate?

−→ linear increase/exponential decrease

−→ AIMD
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TCP congestion control components:

(i) Congestion avoidance

−→ linear increase/exponential decrease

−→ additive increase/exponential decrease (AIMD)

As in Method B, increase CongestionWindow linearly,

but decrease exponentially

Upon receiving ACK:

CongestionWindow ← CongestionWindow + 1

Upon timeout:

CongestionWindow ← CongestionWindow / 2

But is it correct. . .
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“Linear increase” time diagram:
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−→ results in exponential increase
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What we want:

Sender Receiver

time

RTT

time

2

1

3

4

5

−→ increase by 1 every window
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Thus, linear increase update:

CongestionWindow ← CongestionWindow

+ (1 / CongestionWindow)

Upon timeout and exponential backoff,

SlowStartThreshold ← CongestionWindow / 2
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(ii) Slow Start

Reset CongestionWindow to 1

Perform exponential increase

CongestionWindow ← CongestionWindow + 1

• Until timeout at start of connection

→ rapidly probe for available bandwidth

• Until CongestionWindow hits SlowStartThreshold

following Congestion Avoidance

→ rapidly climb to safe level

−→ “slow” is a misnomer

−→ exponential increase is super-fast
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Basic dynamics:

−→ after connection set-up

−→ before connection tear-down
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CongestionWindow evolution:
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−→ what happens if receiver window size hits max?

−→ DOE, supercomputing centers, etc.
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(iii) Exponential timer backoff

TimeOut← 2 · TimeOut if retransmit

(iv) Fast Retransmit

Upon receiving three duplicate ACKs:

• Transmit next expected segment

→ segment indicated by ACK value

• Perform exponential backoff and commence Slow Start

−→ three duplicate ACKs: likely segment is lost

−→ react before timeout occurs

TCP Tahoe: features (i)-(iv)
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(v) Fast Recovery

Upon Fast Retransmit:

• Skip Slow Start and commence Congestion Avoidance

→ dup ACKs: likely spurious loss

• Insert “inflationary” phase just before Congestion Avoid-

ance

Inflationary phase:

• SlowStartThreshold← CongestionWindow / 2

• CongestionWindow← SlowStartThreshold + 3

• On each additional duplicate ACK, increment

CongestionWindow

• On first non-dup ACK, commence Congestion Avoid-

ance

CongestionWindow← SlowStartThreshold
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TCP Reno: features (i)-(v)

−→ pre-dominant form

Many more versions of TCP:

−→ NewReno w/ SACK, w/o SACK, Vegas, etc.

−→ wireless, ECN, multiple time scale

−→ mixed verdict; pros/cons
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Given sawtooth behavior of TCP’s linear increase/exponential

backoff:

Why use exponential backoff and not Method D?

• For multimedia streaming (e.g., pseudo real-time), AIMD

(Method B) is not appropriate

→ use Method D

• For unimodal case—throughput decreases when sys-

tem load is excessive—story is more complicated

→ asymmetry in control law needed for stability


