CONGESTION CONTROL

Phenomenon: when too much traffic enters into system, performance degrades

 \longrightarrow excessive traffic can cause congestion

Problem: regulate traffic influx such that congestion does not occur

- \longrightarrow not too fast, not too slow
- \longrightarrow congestion control
- \longrightarrow first question: what is congestion?

Viewpoint: 3 components

 \rightarrow (1) traffic coming in, (2) in transit, (3) going out

At time instance t:

- traffic influx: $\lambda(t)$ "offered load" (bps)
- traffic outflux: $\gamma(t)$ "throughput" (bps)
- traffic in-flight: Q(t) "load" (volume, i.e., no. of packets)

Examples:

Highway system:

- traffic influx: no. of cars entering highway per second
- traffic outflux: no. of cars exiting highway per second
- traffic in-flight: no. of cars traveling on highway

 \rightarrow at time instance t

California Dept. of Transportation (Caltrans)

Water faucet and sink:

- traffic influx: water influx per second
- \bullet traffic outflux: water outflux per second
- traffic in-flight: water level in sink
- \rightarrow not good if sink overflows

faucet.com

Many examples: heating/cooling system with thermostat . . . What is the meaning of congestion?

 \rightarrow when sending too fast, throughput starts to go down

In the water faucet/sink example: is there congestion?

What about highway system?

• Throughput

 \longrightarrow unimodal or bell-shaped \longrightarrow what is load Q(t) in wireless LAN? What we can control:

 \rightarrow traffic influx rate $\lambda(t)$

 \rightarrow no power over anything else

Congestion control: how to regulate influx rate $\lambda(t)$ not too fast, not too slow—so that throughput $\gamma(t)$ is maximized

- \rightarrow many applications
- \rightarrow TCP congestion control
- \rightarrow multimedia video/audio streaming

Pseudo Real-Time Multimedia Streaming

Examples: streaming client/server apps

 \rightarrow e.g., Real Player, i
Tunes, VoD (video-on-demand), Internet radio

"Pseudo" because of prefetching trick

- \rightarrow application is given head start before playback
- \rightarrow fill & prevent client buffer from becoming empty

Main steps:

- prefetch X seconds worth of audio/video data \rightarrow causes initial playback delay
- keep fetching audio/video data such that X seconds worth of future data resides in receiver's buffer
 - \rightarrow protects against, and hides, spurious congestion
 - \rightarrow don't keep more than X
 - \rightarrow potential for wasting resources: bandwidth, memory, CPU

If streaming is done well, user experiences continuous playback without quality disruptions

Pseudo real-time application architecture:

Sender

Receiver

- Q(t): current buffer level
- Q^* : desired buffer level
- γ : throughput—fixed playback rate

 \rightarrow e.g., 24 frames-per-second (fps) for movies

Goal: keep $Q(t) \approx Q^*$ by adjusting $\lambda(t)$

- \longrightarrow don't buffer too much: resource wastage
- \longrightarrow don't buffer too little: cannot hide congestion

How does load Q(t) vary? \rightarrow obeys simple rule

Compare two time instances t and t + 1.

At time t + 1:

$$Q(t+1) = Q(t) + \lambda(t) - \gamma(t)$$

- Q(t): what was there to begin with
- $\lambda(t)$: what newly arrived
- $\gamma(t)$: what newly exited
- $\lambda(t) \gamma(t)$: net influx (positive or negative)
- note: Q(t) cannot be negative by its meaning \rightarrow no. of packets

$$\rightarrow Q(t+1) = \max\{0, Q(t) + \lambda(t) - \gamma(t)\}$$

• missing item?

Other applications.

Ex. 1: Router congestion control

 \longrightarrow active queue management (AQM)

- receiver is a router/switch
- Q^* is desired buffer occupancy/delay at router \rightarrow too much buffering: bufferbloat (Jim Getty)
- router throttles sender(s) to maintain Q^*
 - \rightarrow router sends control packets to senders
 - \rightarrow instruction: slow down, go faster, stay put

Ex. 2: Desktop videoconferencing
→ e.g., AOL, MSN, Skype, Yahoo
→ video quality may not be good: why?
→ misconception: network is blamed

Video Quality: Miss vs. Hit

Thus: pseudo real-time multimedia streaming application of congestion control

 \longrightarrow producer/consumer rate mismatch problem

Note: producer/consumer problem in OS

- $\longrightarrow\,$ focus on orderly access of shared data structure
- \longrightarrow mutual exclusion
- \longrightarrow e.g., use of counting semaphores
- \longrightarrow necessary but insufficient