
CS 422 Park

Congestion Control

Phenomenon: when too much traffic enters into system,

performance degrades

−→ excessive traffic can cause congestion

Problem: regulate traffic influx such that congestion does

not occur

−→ not too fast, not too slow

−→ congestion control

−→ first question: what is congestion?

CS 422 Park

Viewpoint: traffic coming in, in transit, going out

traffic in−flight

traffic influx traffic outfluxNetwork

At time t:

• traffic influx: λ(t) “offered load” (bps)

• traffic outflux: γ(t) “throughput” (bps)

• traffic in-flight: Q(t) “load”

→ volume: total packets in transit (no. of packets)

CS 422 Park

Examples:

Highway system:

• traffic influx: no. of cars entering highway per second

• traffic outflux: no. of cars exiting highway per second

• traffic in-flight: no. of cars traveling on highway

−→ at time instance t

California Dept. of Transportation (Caltrans)

CS 422 Park

Water faucet and sink:

• traffic influx: water influx per second

• traffic outflux: water outflux per second

• traffic in-flight: water level in sink

−→ “congestion?”

faucet.com

Thermostat . . .

CS 422 Park

802.11b WLAN:

• Throughput

 3

 3.5

 4

 4.5

 5

 5.5

 3.5 4 4.5 5 5.5 6 6.5

M
A

C
 S

ys
te

m
 T

h
o
u
g
h
p
u
t
(M

b
/s

)

Offered Load (Mb/s)

node 2
node 5

node 10
node 20
node 30
node 50

node 100

−→ unimodal or bell-shaped

−→ recall: less pronounced in real systems

CS 422 Park

What we can control:

−→ traffic influx rate λ(t)

−→ no power over anything else

Ex.:

• Faucet knob in water sink

• Temperature needle in thermostat

• Cars entering onto highway: traffic light

• Packets entering the Internet

→ from web server, P2P server, PC, laptop/handheld

CS 422 Park

How does in-flight traffic or load Q(t) vary?

−→ obeys simple rule

Compare two time instances t and t + 1.

At time t + 1:

Q(t + 1) = Q(t) + λ(t)− γ(t)

• Q(t): what was there to begin with

• λ(t): what newly arrived

• γ(t): what newly exited

• λ(t)− γ(t): net influx (+ or −)

• Q(t) cannot be negative: no. of packets

→ Q(t + 1) = max{0, Q(t) + λ(t)− γ(t)}
• missing item?

CS 422 Park

Pseudo Real-Time Multimedia Streaming

−→ e.g., RealPlayer, iTunes, Internet radio

−→ “pseudo” because of prefetching trick

−→ application is given headstart: few seconds

−→ fill buffer & prevent from becoming empty

Steps involved:

• prefetch X seconds worth of audio/video data

• causes initial delayed playback

→ e.g., couple of seconds delay after click

• keep fetching audio/video data such that X seconds

worth of future data resides in receiver’s buffer

→ hides spurious congestion

→ user: continuous playback experience

CS 422 Park

Pseudo real-time application architecture:

λ (t) γ

Sender Receiver

Buffer

Q Q(t)*

• Q(t): current buffer level

• Q∗: desired buffer level

• γ: throughput, i.e., playback rate

→ e.g., for video 24 frames-per-second (fps)

Goal: vary λ(t) such that Q(t) ≈ Q∗

−→ don’t buffer too much: memory cost

−→ don’t buffer too little: cannot hide congestion

CS 422 Park

Other applications:

−→ pseudo real-time set-up is highly versatile

−→ captures many scenarios

Ex. 1: Router congestion control

−→ active queue management (AQM)

• receiver is a router/switch

• Q∗ is desired buffer occupancy/delay at router

• router throttles sender(s) to maintain Q∗

−→ send control packets to senders

−→ slow down, go faster, stay put

CS 422 Park

Ex. 2: Desktop videoconferencing

−→ e.g., AOL, MSN, Skype, Yahoo

−→ video quality is not good: why?

−→ misconception: network is blamed

receiver video quality:
not good (why?)

kernel space

USB/FireWire interface

user space

controller
DMA

IRQ

DMA buffer

kernel buffer

sys
call

transcoding/encoding/
transmission

video camera

Sender PC

...

CS 422 Park

Performance consequences:

hit

miss

0 500 1000 1500 2000

frame index

Video Quality: Miss vs. Hit

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 0 10000 20000 30000 40000 50000 60000

ke
rn

e
l b

u
ff

e
r

si
ze

 (
b

yt
e

s)

time (msec)

Kernel Buffer Dynamics

CS 422 Park

Thus: pseudo real-time multimedia streaming application

of congestion control

−→ producer/consumer rate mismatch problem

−→ also called “flow control”

Note: producer/consumer problem in OS

−→ focus on orderly access of shared data structure

−→ mutual exclusion

−→ e.g., use of counting semaphores

−→ necessary but insufficient

CS 422 Park

What is the goal?

−→ achieve Q(t) = Q∗

How to: basic idea

• if Q(t) = Q∗ do nothing

• if Q(t) < Q∗ increase λ(t)

• if Q(t) > Q∗ decrease λ(t)

−→ a rule of thumb

−→ called “control law”

CS 422 Park

Network protocol implementation:

−→ some design options available

• control action undertaken at sender

→ smart sender/dump receiver

→ preferred mode in many Internet protocols

→ when might the opposite be better?

• receiver informs sender of Q∗ and Q(t)

→ feedback packet (“control signaling”)

→ or simply +/− indication (binary)

→ or actual gap Q∗ −Q(t)

Receiver sends feedback to sender; sender takes action

−→ called feedback control

−→ or closed-loop control

CS 422 Park

Key question in feedback congestion control:

−→ how much to increase/decrease λ(t)

−→ we already know in which direction

Desired state of the system:

Q(t) = Q∗ and λ(t) = γ

−→ why is “λ(t) = γ” needed?

Starting state:

−→ empty buffer and nothing is being sent

−→ think of iTunes, Rhapsody, etc.

i.e., Q(t) = 0 and λ(t) = 0

CS 422 Park

Time evolution (or dynamics): track Q(t) and λ(t)

Q*

11 2 3 4 5 6 7 8 9 10 11 12 . . .

Q(t)

t

λ (t)

t

γ

11 2 3 4 5 6 7 8 9 10 11 12 . . .

CS 422 Park

Congestion control methods: A, B, C and D

Method A:

• if Q(t) = Q∗ then λ(t + 1)← λ(t)

• if Q(t) < Q∗ then λ(t + 1)← λ(t) + a

• if Q(t) > Q∗ then λ(t + 1)← λ(t)− a

where a > 0 is a fixed parameter

−→ called linear increase/linear decrease

Question: how well does it work?

Example:

• Q(0) = 0

• λ(0) = 0

• Q∗ = 100

• γ = 10

• a = 1

CS 422 Park

0

50

100

150

200

250

0 100 200 300 400 500

Lo
ad

Time

Load Evolution
Target

0

5

10

15

20

25

30

0 100 200 300 400 500

La
mb

da

Time

Lambda Evolution
Gamma

CS 422 Park

With a = 0.5:

0

50

100

150

200

250

0 100 200 300 400 500

Lo
ad

Time

Load Evolution
Target

0

5

10

15

20

25

30

0 100 200 300 400 500

La
mb

da

Time

Lambda Evolution
Gamma

CS 422 Park

With a = 3:

0

50

100

150

200

250

0 100 200 300 400 500

Lo
ad

Time

Load Evolution
Target

0

5

10

15

20

25

30

0 100 200 300 400 500

La
mb

da

Time

Lambda Evolution
Gamma

CS 422 Park

With a = 6:

0

50

100

150

200

250

0 100 200 300 400 500

Lo
ad

Time

Load Evolution
Target

0

5

10

15

20

25

30

0 100 200 300 400 500

La
mb

da

Time

Lambda Evolution
Gamma

CS 422 Park

Remarks:

• Method A isn’t that great no matter what a value is

used

→ keeps oscillating

• Actually: would lead to unbounded oscillation if not

for physical restriction λ(t) ≥ 0 and Q(t) ≥ 0

−→ i.e., bottoms out

−→ easily seen: start from non-zero buffer

−→ e.g., Q(0) = 110

CS 422 Park

With a = 1, Q(0) = 110, λ(0) = 11:

0

50

100

150

200

250

0 20 40 60 80 100

Lo
ad

Time

Load Evolution
Target

0

5

10

15

20

25

30

0 20 40 60 80 100

La
mb

da

Time

Lambda Evolution
Gamma

CS 422 Park

Method B:

• if Q(t) = Q∗ then λ(t + 1)← λ(t)

• if Q(t) < Q∗ then λ(t + 1)← λ(t) + a

• if Q(t) > Q∗ then λ(t + 1)← δ · λ(t)

where a > 0 and 0 < δ < 1 are fixed parameters

Note: only decrease part differs from Method A.

−→ linear increase with slope a

−→ exponential decrease with backoff factor δ

−→ e.g., binary backoff in case δ = 1/2

Similar to Ethernet and WLAN backoff

−→ question: does it work?

CS 422 Park

With a = 1, δ = 1/2:

0

50

100

150

200

250

0 40 80 120 160 200

Lo
ad

Time

Load Evolution
Target

0

5

10

15

20

25

30

0 40 80 120 160 200

La
mb

da

Time

Lambda Evolution
Gamma

CS 422 Park

With a = 3, δ = 1/2:

0

50

100

150

200

250

0 40 80 120 160 200

Lo
ad

Time

Load Evolution
Target

0

5

10

15

20

25

30

0 40 80 120 160 200

La
mb

da

Time

Lambda Evolution
Gamma

CS 422 Park

With a = 1, δ = 1/4:

0

50

100

150

200

250

0 40 80 120 160 200

Lo
ad

Time

Load Evolution
Target

0

5

10

15

20

25

30

0 40 80 120 160 200

La
mb

da

Time

Lambda Evolution
Gamma

CS 422 Park

With a = 1, δ = 3/4:

0

50

100

150

200

250

0 40 80 120 160 200

Lo
ad

Time

Load Evolution
Target

0

5

10

15

20

25

30

0 40 80 120 160 200

La
mb

da

Time

Lambda Evolution
Gamma

CS 422 Park

Note:

• Method B isn’t that great either

• One advantage over Method A: doesn’t lead to un-

bounded oscillation

→ note: doesn’t hit “rock bottom”

→ due to asymmetry in increase vs. decrease policy

→ we observe “sawtooth” pattern

• Method B is used by TCP

→ linear increase/exponential decrease

→ additive increase/multiplicative decrease (AIMD)

Question: can we do better?

−→ what “freebie” have we not made use of?

CS 422 Park

Method C:

λ(t + 1)← λ(t) + ε(Q∗ −Q(t))

where ε > 0 is a fixed parameter

Tries to adjust magnitude of change as a function of the

gap Q∗ −Q(t)

−→ incorporate distance from target Q∗

−→ before: just the sign (above/below)

Thus:

• if Q∗ −Q(t) > 0, increase λ(t) proportional to gap

• if Q∗ −Q(t) < 0, decrease λ(t) proportional to gap

Trying to be more clever. . .

−→ bottom line: is it any good?

CS 422 Park

With ε = 0.1:

0

50

100

150

200

250

0 50 100 150 200

Lo
ad

Time

Load Evolution
Target

0

5

10

15

20

25

30

0 50 100 150 200

La
mb

da

Time

Lambda Evolution
Gamma

CS 422 Park

With ε = 0.5:

0

50

100

150

200

250

0 50 100 150 200

Lo
ad

Time

Load Evolution
Target

0

5

10

15

20

25

30

0 50 100 150 200

La
mb

da

Time

Lambda Evolution
Gamma

CS 422 Park

Answer: no

−→ looks good

−→ but looks can be deceiving

Time to try something strange

−→ any (crazy) ideas?

−→ good for course project

CS 422 Park

Method D:

λ(t + 1)← λ(t) + ε(Q∗ −Q(t))− β(λ(t)− γ)

where ε > 0 and β > 0 are fixed parameters

−→ odd looking modification to Method C

−→ additional term −β(λ(t)− γ)

−→ what’s going on?

−→ does it work?

CS 422 Park

With ε = 0.2 and β = 0.5:

0

50

100

150

200

250

0 5 10 15 20 25 30 35 40 45 50

Lo
ad

Time

Load Evolution
Target

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40 45 50

La
mb

da

Time

Lambda Evolution
Gamma

CS 422 Park

With ε = 0.5 and β = 1.1:

0

50

100

150

200

250

0 5 10 15 20 25 30 35 40 45 50

Lo
ad

Time

Load Evolution
Target

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40 45 50

La
mb

da

Time

Lambda Evolution
Gamma

CS 422 Park

With ε = 0.1 and β = 1.0:

0

50

100

150

200

250

0 5 10 15 20 25 30 35 40 45 50

Lo
ad

Time

Load Evolution
Target

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40 45 50

La
mb

da

Time

Lambda Evolution
Gamma

CS 422 Park

Remarks:

• Method D has desired behavior

• Is superior to Methods A, B, and C

• No unbounded oscillation

• In fact, dampening and convergence to desired state

→ converges to target operating point (Q∗, γ)

→ called asymptotically stable

→ why?

