CS240 Midterm Solution, summer 2025
P1(a) 16 pts

Run-time bug: *xy =5
6 pts

Segmentation fault (or violation).
4 pts

y will likely contain an address that does not belong to the running program;
trying to access such an address causes a segmentation fault.
6 pts

P1(b) 16 pts

1 (the value of x) // but not the value of y.
7 pts

Even though printf("%d", y) would have executed correctly, the value of y (2)
is temporarily held in main memory and before it can be flushed to the display
statement *z = 3 causes a segmentation fault. Thus the value of y is not seen
on the display.

9 pts

P1(c) 16 pts

s is a pointer that holds the beginning address of 1@ contiguous locations
where 10 integers may be stored. *s dereferences (i.e., follows the address
contained in s), hence its value is equivalent to s[@] (the content at the
first of the 10 contiguous locations).

10 pts

By precedence of operation * over operation +, *s + 2 is equivalent to
(*s) + 2 which is equal to s[0] + 2.
6 pts

P2(a) 17 pts

If the input entered on stdin is too long scanf("%s", v) will cause overflow
of 1-D char array v[10]. Since v[10] is local to main() this may overwrite
and corrupt the canary that gcc (by default) placed below the return address
of main.

5 pts

Since the code added by gcc checks if the canary has changed before executing
return, the corrupted canary will cause a stack smashing message to be

output before terminating the running program.

5 pts

printf() will likely succeed since the return address of printf() to its
caller main() has not been affected by overwriting v[10].
3 pts

Change scanf() to scanf("%9s", v) so that no more than 9 characters are read
(10th character for EOS).

// Allow scanf("%10s", v) without point deduction.

4 pts

P2(b) 17 pts

fgetc() needs to be able to signal the caller that the end of a file has



been reached which is accomplished by returning EOF (i.e., -1). If the return
type were char then all 8 bits would be needed to communicate the 8-bit
content of a data byte read from a file. This would leave no room to

notify the caller that the end of file has been reached through the return
value.

4 pts

int x;
while((x = fgetc(fp)) !'= EOF) {
4 pts
if(x > 127) {
printf("Not ASCII text file.\n");
exit(1);
) // exit(@) and return are fine too.
4 pts

printf("ASCII text file.\n");
2 pts

Read byte-by-byte until EOF. If a byte value exceeds 127 (i.e., most significant
bit is not @) then not ASCII character, thus file is not ASCII text. Only if
all bytes of the file are ASCII is it an ASCII text file.

3 pts
P3 18 pts
// set mask to 0x00000001
int m;
m=1;
// unsigned int for m is fine.
5 pts
int y;
// unsigned int for y is fine.
int x;
while((x = fgetc(fp)) != EOF) {
y = x > 7; // Move 8'th bit to first bit position.
6 pts
if((y &m) == 1) { // Not ASCII since 8'th bit is 1.
// (y & m) != 0 or equivalents are fine too.
printf("Not ASCII text file.\n");
exit(1);
// exit(@) and return are fine too.
7 pts

printf("ASCII text file.\n");

Bonus 10 pts

11 and 13
6 pts

Since r is static its value will be remembered across function calls. Since
return r++ returns the current value of r (11) first before incrementing it
the first value is 11. At the second call, r starts out 12 due to increment
after first return, then statement r++ increases it to 13 before returning

to caller.

4 pts



