
CS240 Midterm Solution, summer 2024

P1(a) 15 pts

A segmentation fault is likely to arise when executing statement *y = 6.
5 pts

Since the content of y has not been properly initialized, y will likely
contain an address that does not belong to the running program.
5 pts

printf() would have successfully completed, returning to main(), but the
output would likely not be visible on stdout (i.e., display).
5 pts
// Since output is temporarily held in main memory without flushing to
// stdout when the program abnormally terminated.

P1(b) 15 pts

x = ~(~0 << 16)
// Expressions that do not utilize bit processing techniques such as
// x = 0x00FF receive minimal partial credit.
15 pts

P1(c) 15 pts

scanf("%c", &h[3]);
8 pts

scanf("%c", h+3);
7 pts

P2(a) 15 pts

The code will likely generate a stack smashing error (and terminate
abnormally).
The reason is that z being local resides in main()'s stack frame which
contains
main()'s return address.
// The canary guarding the return address is likely to be overwritten by the
// loop exceeding its valid bound.
5 pts

If z is global then stack smashing will not occur since z is not in a region
that contains a return address.
// It may, or may not, generate segmentation fault. In the example discussed
in
class, it did not.
5 pts

If z is a pointer and malloc() is used to allocate heap memory, then it is
similar to the global case.
// Heap memory resides above a.out as do globals.
5 pts

P2(b) 15 pts

int countnum = 0;
int countascii = 0;
4 pts

while((y = fgetc(fp)) != EOF) {
// 5 pts
 countnum++;
 if(0 <= y <= 127) countascii++;
// 6 pts
}
// Instead of range checking bit processing may utilized to check if the 8'th
bit
// is 0.

P3 25 pts

To determine how many lines: read byte-by-byte checking how many bytes have
value '\n'.
5 pts

To determine maximum line length: use a counter initialized to 0 that is
incremented when a byte is read until newline is reached (count includes
newline). Compare current count to previous maximum count. If strictly bigger
update maximum count.
5 pts

essayptr needs to point to a memory region of N contiguous pointers. Each
of the N pointers points to a region M contiguous memory locations (total M
bytes).
// This is wasteful since M is memory required for maximum line length,
7 pts

essayptr = malloc(N * sizeof(char *));
Allocates N contiguous memory locations each of size to hold a char pointer,
i.e., char *.
8 pts

Bonus 10 pts

fgetc() needs to indicate that the end of file has been reached which it
does by returning EOF (-1).
5 pts

The return type of fgetc() cannot be char since all 8 bits are needed to
specify the content of the byte read. Hence setting the return type to int
(4 bytes) allows the 8-bit content to be stored in the first byte of int,
and the additional 3 bytes allows -1 to be represented.
5 pts

