
CS240 Midterm Solution, summer 2023

P1(a) 15 pts

printf() will output 10 (for x) and the address of x (in hexadecimal notation)
which is contained in y.
8 pts

Assignment statement *z = 3 will likely trigger a segmentation fault since a
valid address has not been stored in z.
7 pts

P1(b) 15 pts

g is a function that takes a single argument that is a pointer to char (i.e.,
char *), and g returns a pointer to char (i.e., address that points to char).
4 pts

h is a function pointer that takes a single argument that is a pointer to char,
and h returns a value of type char.
4 pts

x is a pointer to char, i.e., char *x.
3 pts

y is a function that takes an argument that is a pointer to char and returns
a value of type char, i.e., char y(char *).
4 pts

P2(a) 15 pts

Calling fun() will likely generate a stack smashing error.
5 pts

This is so since x is local to fun() and overflowing the 1-D array (by 3 elements,
i.e., 12 bytes) is likely to cause the canary (bit pattern) inserted by gcc (to
guard the return address) to be changed.
5 pts

If x is made global, gcc does not insert a canary, hence stack smashing will not
occur. However, overflowing x may, or may not, trigger a segmentation fault.
5 pts

P2(b) 15 pts

fopen() may fail.
4 pts

fscanf() may overflow 1-D array r if the character sequence in data.dat exceeds
100 bytes.
5 pts

f = fopen("data.dat", "r");
if(f == NULL) {
 printf("error opening data.dat");
 exit(1);
}
3 pts

fscanf(f, "%99s", r);
// fscanf(f, "%100s", r) is fine as well.
3 pts

P3(a) 20 pts

int main() {

int **d;
2 pts

int N, M;
int i, j;

scanf("%d %d", &N, &M);

d = (int **) malloc(N * sizeof(int *));
// d = malloc(N * sizeof(int *)) or malloc(N * 8) are fine too.
6 pts

for(i=0; i<N; i++)
 *(d + i) = (int *) malloc(M * sizeof(int));
// Imitting (int *) and using constant 4 in place of sizeof(int) are fine too.
6 pts

for(i=0; i<N; i++)
 for(j=0; j<M; j++)

scanf("%d", &d[i][j]);
6 pts
}

P3(b) 20 pts

unsigned int x, m;
int i, count = 0;

scanf("%u", &x); // Read unsigned int input.
2 pts

m = ~(~0 << 1); // Set mask to 000...01
// m = 1 is fine too.
6 pts

for(i=0; i<32; i++) {

 if((x & m) == 0) // If bit value at first position is 0 increment count.
count++;

6 pts

 x = x >> 1; // Shift bits of x to the right by one position.
6 pts
}

printf("%d", count);
// Printing count can be omitted.

Bonus 10 pts

printf() only needs a copy of the value of x to do its work of printing the value
to stdout.
3 pts

scanf() needs the address of x so that the value entered through stdin (by default,
keyboard) can be stored at the address of x.
3 pts

Yes, since following the address of x allows printf() to access its value.
2 pts

It is not necessary to reveal the address of x to printf() since it only requires
its value.
2 pts

