
CS240 Final Solution, summer 2024

P1(a) 15 pts

char *f(int *) is denotes a function that takes a pointer to int as argument
and returns a pointer to char (i.e., an address where its content is char).
5 pts

Function pointer, char (*h)(int *), points to a function that takes a pointer
to int as argument and returns a value of type char.
5 pts

Change to, char *(*h)(int *). By prepending * to (*h) we denote that the
function pointer returns a pointer to char.
5 pts

P1(b) 15 pts

8 + 8 + 8 = 24 bytes
3 pts
// 8 bytes for char m since gcc allocates in blocks of 8 bytes due to size
// of other fields. char *n is 8 bytes since lab machines are 64-bit.
// 4 + 8 + 8 is also acceptable if char is assumed to be allocated 4 bytes.

r takes up 8 bytes since it is a pointer, i.e., its content is an address.
2 pts

r = malloc(sizeof(superdat_t)); // No penalty for not checking NULL return.
2 pts

r->n = malloc(sizeof("hello"));
2 pts

strcpy(r->n, "hello");
2 pts

r->m = ‘?’;
1 pt

r->k = 12.345;
1 pt

strcpy() modifies the string pointed to by the first argument (hence no const)
but the second argument is only accessed for read. Hence the const qualifier.
2 pts

P1(c) 15 pts

Values output: 5, 5, 5
5 pts

Since the three field share the same 4 byte memory location, the last assignment
statement, u.z = 5, overwrites previous writes to u.x and u.y.
5 pts

In a situation where a data structure such as u can possess three different
features (i.e., its value can be of three different types) but at any one time
only one feature is relevant (needs to be remembered), using union over struct
saves memory.
5 pts
// Last sentence of P1(c) has a typo: _float y_ should be _int y_.

P2(a) 15 pts

z = &x;
5 pts

*(char *) (z+4) = 'A'; // Skip 4 bytes over the first field int a.
*(char *) (z+5) = 'B';
*(char *) (z+6) = 'C';
*(char *) (z+7) = 'D';
8 pts

No.
2 pts
// Using char *z instead of void *z will generate a warning.

P2(b) 15 pts

int main(int argc, char **argv) {
FILE *fp;
int i, sum = 0;
2 pts

 if(argc < 3) { // If comparison is argc < 2 don't deduct points since the question
 // states "at least two command-line arguments" which may be taken
 // literally by some.
printf("Invalid use.\n");
exit(1);

 }
 3 pts

 if((fp = fopen(argv[1],"w")) == NULL) {
 fprintf(stderr,"File write failed\n");
 exit(1);
 }
 3 pts
 // Deduct 1 point if NULL return check is not performed.

 for(i=2; i<argc; i++)
sum += atoi(argv[i]);

 5 pts

 fprintf(fp, "%d", sum);
 2 pts
}

P3 25 pts

int subchar(char *s, ...) {
va_list arglist;
int n, x, i;
2 pts

 n = strlen(s); // strlen() does not count '\0'.
 2 pts

 va_start(arglist, s);
 2 pts

 for(i=0; i<n; i++) {
 5 pts

x = va_arg(arglist, int); // Must be int, not char. Deduct 2 pts if char.
5 pts

if(x > 127) {
 printf("Invalid argument(s).\n");

 exit(1);
}
2 pts

*(s+i) = (char) x; // Type conversion to char is not needed.
5 pts

 }

 va_end(arglist);
 2 pts
}

Bonus 10 pts

In Windows, text files terminate lines with two characters '\r' (carriage
return) and '\n'. When a text file is opened using fopen() without binary
mode "b" for reading (i.e., only "r") then Windows may suppress '\r' so
that it is not read by fgetc().
5 pts

To prevent Windows from interfering and forcing to truthfully read all
characters including '\r' (and '\n') the binary mode is used for read ("rb").
5 pts
// The above applies not only to Windows but, in practice, that's the most
// relevant case which was discussed in class. Talking about POSIX etc. is
// outside the scope, not expected nor needed.

