
CS240: Programming in C

Lecture 1: Class overview.

Cristina Nita-Rotaru Lecture 1/ Fall 2013 1

Why learn C (1)

!  C is one of the foundations for CS:
"  Contains/applies principles from programming

languages, computer architectures, operating
systems, network communication, database,
graphical user interface (GUI), graphics, image
processing, parallel processing, multi-threads,
real-time systems, device drivers, data
acquisition, algorithms, numerical analysis, and
computer game.

Cristina Nita-Rotaru Lecture 1/ Fall 2013 4

What does this buy you?

!  Understanding: understand better the
interaction between machine and
software:
"  “…teaches individuals how computers really

work”
"  “…built a foundation you’ll be thankful for

every 300+ level course ”

Cristina Nita-Rotaru Lecture 1/ Fall 2013 5

Why learn C (2)

!  C is the most commonly used
programming language in industry.
"  Next two popular are Java and C++
"  Language of systems programming: low-level

control over the OS, networking, crypto
operations, email, games, embedded systems
have higher performance when written in C

http://www.langpop.com

Cristina Nita-Rotaru Lecture 1/ Fall 2013 6

What does this buy you?

!  Helps you be as prepared as
possible for a job:
"  Most of the employers want

candidates to know multiple languages
"  Will prepare you better for a job

interview
"  Gives you more opportunities within a

company

Cristina Nita-Rotaru Lecture 1/ Fall 2013 7

Why learn C (3)

!  C is the base for almost all popular
programming languages.

!  Because of the performance and portability of C,
almost all popular cross-platform programming
languages and scripting languages, such as C++,
Java, Python, Objective-C, Perl, Ruby, PHP, Lua,
and Bash, are implemented in C and borrowed
syntaxes and functions heavily from C.

!  Almost all languages can interface with C and C++ to
take advantage of a large volume of existing C/C++
libraries. Many of their toolkits, modules or packages
are written using C or C++.

Cristina Nita-Rotaru Lecture 1/ Fall 2013 8

What does this buy you?

!  It will help you learn quickly other
languages

!  It will allow you to interface with many
other languages

Cristina Nita-Rotaru Lecture 1/ Fall 2013 9

Reference material

!  The C Programming
Language, Brian W.
Kerninghan and Dennis
M. Ritchie, 2nd Edition

!  Lecture slides posted
online

Cristina Nita-Rotaru Lecture 1/ Fall 2013 23

How to study

!  Read the book, reference material, slides,
man pages

!  Code each example from class, don’t just
read it, code it

!  Do the labs and projects
!  Do the practice exercises from lectures
!  Start small, then add functionality
!  Make mistakes and observe output
!  Make sure you always understand why it did

not work and why the solution works

Cristina Nita-Rotaru Lecture 1/ Fall 2013 26

Terminology

!  What’s a computer?
!  What is hardware/software
!  What’s an algorithm ?
!  What’s a program?
!  What’s an operating system?
!  What’s a programming language ?

"  Machine language
"  Assembly language
"  High-level language

Cristina Nita-Rotaru Lecture 1/ Fall 2013 31

Computer architecture

Cristina Nita-Rotaru Lecture 1/ Fall 2013 32

Memory

CPU

Storage

Mouse

Keyboard

Network

Display

Cristina Nita-Rotaru Lecture 1/ Fall 2013 33

HARDWARE

OPERATING SYSTEM

APPLICATIONS

OS Job

!  Management of the processes and
their access to resources
"  Memory
"  CPU access
"  I/O
"  Network
"  Other devices

!  Interaction with the user
"  Graphic interface
"  Other devices

Cristina Nita-Rotaru Lecture 1/ Fall 2013 34

Algorithm/Program

!  Algorithm: procedure for solving a
problem in finite steps

!  Program: set of instructions to the CPU,
stored in memory, read and executed by
the CPU

Cristina Nita-Rotaru Lecture 1/ Fall 2013 35

Machine and assembly language

!  Machine language : binary information,
specific to a CPU
"  How a CPU interprets data: e.g. how are memory

addresses represented, how is an instruction
coded, etc

"  This is the binary or executable code
!  Assembly language: easier to write for

people, using symbols, requires an assembler
"  Still need to think in terms of low level CPU steps
"  Still hardware-specific

Cristina Nita-Rotaru Lecture 1/ Fall 2013 36

High-level language

!  Closer to human language
!  Needs a compiler to convert it to machine

language
!  One can write programs in many high-level

languages for the same CPU
!  More portable
!  Examples: C, C++, C#, Objective C, Java,

SmallTalk, also Cobol, Basic, Pascal …

Cristina Nita-Rotaru Lecture 1/ Fall 2013 37

Readings for next lecture

K&R Chapter 1: A tutorial
introduction

Cristina Nita-Rotaru Lecture 1/ Fall 2013 38

