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Abstract—With the proliferation of high-speed networks and networked
services, provisioning differentiated services to a diverse user base with het-
erogeneous QoS requirements has become an important problem. The tra-
ditional approach of resource reservation and admission control provides
both guarantees and graded services, however, at the cost of potentially
underutilized resources and limited scalability. In this paper, we describe
a WAN QoS provision architecture that adaptively organizes best-effort
bandwidth into stratified services with graded QoS properties such that the
QoS needs of a diverse user base can be effectively met.

Our architecture—SBS (Stratified Best-effort Service)—promotes a sim-
ple user/simple network realization where neither the user nor the network
is burdened with complex computational responsibilities. SBS is scalable,
efficient, and adaptive, and it complements the guaranteed service archi-
tecture, sharing a common network substrate comprised of GPS routers.
It is also a functional complement, provisioning QoS efficiently commensu-
rate with user needs, albeit at the cost of weaker protection. SBS is suited
to noncooperative network environments where users behave selfishly and
resource contention resolution is mediated by the principle of competitive
interaction. A principal feature of SBS is the transformation of user-centric
QoS provision mechanisms—a defining characteristic of competitive inter-
action entailing intimate user control of internal network resources—into
network-centric mechanisms while preserving the former’s resource allo-
cation paradigm.

End-to-end QoS control is facilitated by decentralized control based on
Lagrangian optimization—achieve a target end-to-end QoS at minimum
cost or resource usage—which, in turn, is amenable to distributed imple-
mentation. SBS achieves per-flow QoS control with zero per-flow state at
routers and a packet header whose size is independent of hop count. SBS,
in spite of foregoing both resource reservation and admission control, is
able to provision stable, graded QoS.

I. INTRODUCTION

A. Motivation

With the advent of global network infrastructures and its
emerging role as an important enabling platform for services
spanning commerce, entertainment, education, and a com-
pendium of everyday activities, building an efficient network ar-
chitecture capable of supporting diverse user needs has become
a critical problem.

The traditional approach to QoS provision uses resource
reservation and admission control such that a traffic stream’s
data rate and burstiness can be suitably accommodated by a net-
work. Although research abounds [1], [2], [3], analytic tools
for computing QoS guarantees rely on shaping of input traffic
to preserve well-behavedness across switches which implement
some form of packet scheduling discipline such as generalized
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processor sharing (GPS), also known as weighted fair queu-
ing [4], [5]. Real-time constraints of multimedia traffic and the
scale-invariant burstiness associated with self-similar network
traffic [6] limit the shapability of input traffic while at the same
time reserving bandwidth that is significantly smaller than the
peak transmission rate. Thus QoS and utilization stand in a
trade-off relationship with each other [7] and transporting ap-
plication traffic over reserved channels, in general, incurs a high
cost.

This makes it important to organize today’s best-effort band-
width, as examplified by the Internet, into stratified services
with graded QoS properties such that the QoS requirements of
a compendium of applications can be effectively met. This is
particularly useful for applications that possess diverse but—
to varying degrees—flexible QoS requirements. It would be
overkill to transport such traffic over reserved channels. On the
other hand, relying on homogeneous best-effort service, charac-
teristic of today’s Internet, would be equally unsatisfactory. A
dual architecture capable of supporting reserved and stratified
best-effort service is needed which, in turn, helps amortize the
cost of inefficiencies stemming from overprovisioned resources
for guaranteed traffic.

Another important consideration when designing QoS provi-
sion mechanisms are issues surrounding fairness, stability, and
optimality. With respect to fairness, a principal question cen-
ters on “who should get what and how much.” Resource con-
tention resolution must address the normative issue of networks
with users possessing diverse QoS requirements where users
should receive unequal share of resources commensurate with
their QoS requirements or other well-defined criteria. From a
network efficiency perspective, how to induce users to consume
just enough resources to satisfy their QoS needs and thus leave a
maximal pool of resources for others to use is a problem of cen-
tral import. Intimately tied to fairness is the issue of stability. A
resource assignment deemed fair by some criterion may not be
sustainable unless there is a form of consensus, and even if so, it
may not be reachable from all initial configurations. Instability,
in general, has an adverse effect on QoS—a user’s end-to-end
QoS may jump from one value to another—and providing sta-
ble, predictable service is an important task.

B. New Contribution

In [8], we give a game-theoretic analysis of the multi-class
QoS provision system for noncooperative single-switch network



systems showing when Nash equilibria exist and under what
conditions they are Pareto and/or system optimal. In [9], we ad-
vance a multi-class QoS provision architecture for many-switch
systems which extends the single-switch system to the many-
switch case using single-switch reduction based on the notion
of selfishness emulation.

In this paper, we focus on the distributed QoS control prob-
lem associated with noncooperative many-switch systems by
formulating the many-switch QoS assignment problem as a con-
strained optimization problem—which is NP-hard even for a
single user—and transforming the optimization problem into an
unconstrained form using the framework of Lagrangian multi-
pliers. The main advantage of the Lagrangian formulation is
its decoupled form—i.e., across switches—modulo a confined
dependence introduced by Lagrangian multipliers which leads
to an approximation procedure that is amenable to efficient de-
centralized implementation. Distributed control consists of two
parts, one, local optimization at every switch which chooses a
service class that meets the local QoS responsibility while mini-
mizing resource usage, and two, global optimization via an end-
to-end feedback loop that adjusts the Lagrangian multipliers—
shared across all switches—to satisfy a target end-to-end QoS
at minimum cost. Interestingly, the solution procedure obtained
using the Lagrangian framework turns out to be isomorphic to
the distributed QoS control proposed in [9] which is based on
single-switch reduction, an approach that achieves QoS control
by generalizing an optimal solution procedure for the single-
switch case to the many-switch case.

We demonstrate the efficacy of our many-switch QoS archi-
tecture and its distributed control by simulating a WAN en-
vironment based on a vBNS-like topology with multiple traf-
fic flows possessing diverse QoS requirements. We compare
the performance of our architecture—SBS (Stratified Best-effort
Service)—against a reservation scheme that a priori allocates
fixed service classes based on assumed knowledge of all traf-
fic flows—their traffic characteristics and QoS requirements—
as well as FIFO packet scheduling and random service class as-
signment. We show the robustness of our architecture by gener-
ating problem instances with varying problem difficulty from
the space of probability distributions over user QoS require-
ments falling into three categories—“easy,” “intermediate,” and
“difficult.” We show that our architecture performs favourably
when compared to the aforementioned QoS provision schemes.

C. Related Work

Significant work has been carried out in formulating resource
allocation problems spanning a number of different domains
using tools from microeconomics and game theory [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19]. The models and ap-
proaches proposed in the literature differ along several dimen-
sions, some of the important ones being whether applications
or users are assumed to be cooperative or selfish, whether pric-
ing is used or not, and how much computing responsibility is
delegated to the user. Several papers have addressed the issue
of multi-class QoS provision in high-speed networks [10], [20],
[21], [18], [17]. Some of the works employ a cooperative frame-
work or place significant computing responsibilities on the part
of the user [21], [17], some investigate the effect of pricing in-

centives [10], and others represent flow/congestion control and
routing models [20], [16], [18] that partially address the quality
of service provision problem whose essence is users possess-
ing diverse QoS requirements. QoS provision architectures for
noncooperative WAN environments is still in its infancy with
the Smart Market [22] and our previous work in noncoopera-
tive many-switch QoS provision based on single-switch reduc-
tion [9] representing two instances. In [22], pricing—in the form
of packets carrying bids—is used to resolve scheduling conflicts
of packets at switches inside a network implementing priority
queues. With respect to its core features, the Smart Market is
similar to a simplified version of our many-switch architecture
where instead of QoS indicators—used to dynamically select
different service classes at every switch—a fixed priority or ser-
vice class label is propagated to every switch.

A related development are efforts directed at designing net-
work architectures with the aim of delivering differentiated ser-
vice with “soft” or weak forms of guarantees using aggregate—
as opposed to per-flow—traffic control [23], [24]. Of particu-
lar interest are Assured Service [23] and Premium Service [24]
which affect weak protection through traffic shaping/marking
and support from routers. In both cases, it is assumed that
service level—i.e., QoS—is computed using admission control,
and the core task revolves around providing protection from ill-
behaving flows that exceed their contract specifications. This
is done through 2-state (in/out) marking with the help of RIO
gateways (a form of RED gateway with dual thresholds) [23],
or through leaky bucket traffic shaping with gateways imple-
menting priority queuing [24]. Our own work ([25], [8] and
present), couched in the context of providing graded QoS provi-
sion with weak guarantees, takes a different approach. Whereas
[23], [24] concentrate on providing protection through explicit
traffic shaping/policing, our architecture concentrates on pro-
viding graded QoS with protection handled by implicit admis-
sion control through usage pricing. An important objective of
SBS is the elimination of explicit admission control—except in
the provision of guaranteed services—as a mechanism for per-
flow QoS control, an impediment to scalability as detrimental
as maintaining per-flow state at routers. SBS is a scalable QoS
provision architecture that uses neither resource reservation nor
admission control when organizing best-effort bandwidth into
graded service commensurate with user needs.

The rest of the paper is organized as follows. In the next
section, we define the many-switch multi-class QoS provision
problem leading to a resource allocation problem in the nonco-
operative context. This is followed by a decription of the many-
switch QoS provision architecture based on the Lagrangian for-
mulation, its properties, and decentralized implementation. Sec-
tion IV shows performance results depicting the behavior of
SBS. We give a comparative evaluation in the context of reserva-
tion, FIFO, and random service class assignment schemes, and
for problem instances of varying difficulty.

II. MULTI-CLASS QOS PROVISION PROBLEM

A. Network Model

Assume a network comprising of a set of routers and end sta-
tions connected via some topology. The routers implement GPS



packet scheduling [4], [5] where packets labeled by their ser-
vice class number receive service commensurate with the re-
sources allocated for that service class and the traffic impinging
on that service class. If every application flow is mapped to
a unique service class at every switch, then the service class
number is synonymous with flow ID and the system can be
viewed as implementing per-flow QoS control. If the mapping
is many-to-one, QoS control is exercised on an aggregate flow
basis. Other things being equal, the larger the service weight
or the smaller the aggregate traffic flowing into a service class,
the better the QoS—e.g., as measured by delay, packet loss rate,
jitter—rendered by that class1.

Assuming fixed routes, the end-to-end QoS experienced by
an application flow is determined by the service levels received
at each of the routers along a path which, in turn, is determined
by the service class assignments—possibly different—at each of
the routers. There is a calculus for computing end-to-end QoS in
terms of the QoS rendered locally at each of the switches, e.g.,
with packet loss behaving multiplicatively and delay behaving
additively. For example, if ��� denotes the packet loss rate at
switch

�����	��
���
on an

�
-hop path, then the end-to-end packet

loss rate is given by
�������������� ��� ����� . Assuming there are �

(in general, � � ) service classes at every switch
��� �!�"
#���

, then
to flow $ there correpond

�
choice variables % �& �'�!�"
 � � which

determine which service class application flow $ is assigned to
at hop

�
. This is shown in Figure II.1.

GPS GPS GPS GPS

m choices m choicesm choices m choices

choice variablesr

.  .  .
1 2 3 r

.  .  .

Fig. II.1. End-to-end QoS—given a fixed route—is determined by the local
QoS rendered at each of the ( switches which, in turn, is determined by the
service class assignment at each switch.

Routing introduces a new set of decision variables; in this
paper, we will confine ourselves to the case where routing is
handled by a separate subsystem, i.e., is given.

B. User Model

Assume ) users or applications where each user $ �*�	��
 ) �
has a traffic demand given by its mean data rate + & . The most
important property associated with a user in the QoS provision
context is its QoS requirement which may be different for each
user. For example, if QoS requirements were represented by
bounds on packet loss rate, delay, and jitter, then a user $ with a
bound , &�-/.�. ms on end-to-end delay would have a more strin-
gent QoS requirement than a user $10 who has a more relaxed
delay bound of , &!23-54�6�6 ms. In general, a user’s QoS require-
ment can be represented by a utility function 7 & which captures
the “satisfaction” experienced by user $ when receiving a cer-
tain QoS. Utility functions are a tool to represent heterogeneous

8
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user preferences and facilitate reasoning about the bahavior of a
system.

Fixing a switch
�9�:�!�"
#���

, user $ ’s flow + �& (note + �& - + &
and + �&<; +>=&?;A@B@�@C; + �& ) can be chosen by the user—or by
the network—to be assigned to one or more of the � different
service classes at

�
. This assignment of “where and how much”

is represented by user $ ’s service class assignment vector D �& -
� + �& � 
 + �& =


BE�EBEF
 + �&!G �1H where + �&JIK; 6 and L I + �&MI - + �& . Thus,
the aggregate flow entering into service class N �O�!�"
 � � is given
by P �I - L & + �&JI . In this paper, we will be interested in the
unsplittable case where + �&JI �<Q 6 
 + �&SR , for all N �T�	��
 � � . For the
unsplittable case, the choice variables % �& defined in Section II-
A completely determine the QoS that a flow will receive at the
routers. Both the splittable and unsplittable case for the single-
switch network (i.e.,

� - �
) are studied in [8].

One last item to define is the behavioral mode of a user—
selfish or cooperative. Selfishness, in our context, will mean that
each application $ �/�	��
 ) � will try to take actions—i.e., settingU & - � % �& 
 %�=& 
�EBE�EF
 % �& �1H assuming it is allowed to do so—so as
to maximize its individual utility 7 & .
Remark II.1 The network substrate described in Section II-
A, can be used to provide both guaranteed and graded services
through resource reservation and admission control. Guaran-
teed here means the protection—i.e., from interference by other
flows—afforded to a flow by GPS through resource reservation
and admission control. Stratified best-effort service, by adopt-
ing a weaker form of protection, consequently also exports QoS
to the user that is, in general, more variable and subject to the
other flows’ potentially detrimental influence.

C. Noncooperative QoS Provision Game

C.1 Many-Switch Network Game

Fix user $ �V�	��
 ) � and assume its traffic is assigned a route
with
� ; � hops or switches. We will use

�W�O�	��
���
as the switch

index. The user has a choice of
�

selection variables % �& �O�!�"
 � �
where % �& - N indicates that user $ has selected to channel his
traffic through service class N at switch

�
. Let

U & denote user$ ’s service class assignment vector and let
U

denote the service
class assignment of all users.

The end-to-end QoS received by user $ , X & �ZY\[ ( ] de-
notes the number of QoS indicators), is a function of

U -
� U � 
�E�EBE^
 U`_ �H ,

X & - X & � U � 

and given $ ’s traffic demand + & , we arrive at the individual util-
ity 7 & � + & 
 X & � , consistent with the single-switch formulation [8],
[9]. Nash equilibria, Pareto optima, and system optima can be
defined with respect to 7 & � + & 
 X & � .
Remark II.2 A configuration is a Nash equilibrium if each
user cannot improve his individual lot through unilateral actions
affecting his traffic allocations. Thus if every player finds him-
self in such a “local optimum,” then from the noncooperative
perspective, the system is at an impasse—i.e., stable rest point.
A configuration is a Pareto optimum if in order to improve the
lot of some player, the lot of others must be sacrificed. A con-
figuration is system optimal if the sum of the individual lots is
maximized. A formal definition can be found in [8].



C.2 Network Game with Pricing

Pricing is introduced as a mechanism for monitoring relative
resource usage by imposing the relation

� ���� � �� -�� � �� ; � �� 
 � 

	 �T�!�"
 � � 
 (II.3)

where � �I is the QoS rendered in service class N at switch
�

and� �I is its price. I.e., the superior the QoS, the higher the price.
Other things being equal, for GPS switches, � �� � � �� iff the rela-
tive resource consumption per unit flow is higher in service class�

than service class
	
. Notice the difference with congestion-

based pricing schemes where high demand—i.e., congestion—
leads to a higher price irrespective of the actual QoS rendered.
Our pricing scheme is fine-granular in the sense that pricing oc-
curs at every switch on a per-flow basis.

The cost or relative resource usage accrued to user $ ’s traffic
flow can be defined in a number of ways including the following
three: + ��� �& L � ����� � ���� , L � ��� � � �
�� + �& , and + & L � ����� � ���� . Here

+ ��� �& denotes the net flow arriving at the receiver. By mono-
tonicity, we have

+ ��� �&
��
�����
� ������

��
�����
� ���� + �& � + &

��
� ���
� �
�� E (II.4)

Relation (II.4) collapses into a single expression when packet
loss is zero. Assuming the above expressions are used to com-
pute the ultimate cost exported to a user via composition with a
monotone price function ��� Y ��� Y � , + & L � ��� � � � �� can be
interpreted as being the most “service provider-friendly” mea-
sure whereas + ��� �& L � � ��� � �
�� is the most “user-friendly one.”

For threshold utilities, one version of the noncooperative
many-switch QoS provision game with pricing is given by

������ � + &
��
�����
� ���� (II.5)

subject to X & � U � � � & . That is, the user seeks a minimum cost
assignment that satisfies the user’s QoS requirement. This prob-
lem, even for a single user is NP-hard—it can be reduced to
a version of multiple choice knapsack—and approximate solu-
tions need to be sought.

Theorem II.6 (Many-Switch QoS Assignment) The per-user
constrained many-switch QoS assignment problem given by
(II.5) is NP-hard.

III. MANY-SWITCH QOS PROVISION ARCHITECTURE

The noncooperative QoS provision game is defined by solv-
ing the constrained optimization problem (II.5) for each user (or
player) $ �A�!�"
 ) � . In a user-centric realization of the game,
each user is assumed to have direct control over its choice vari-
ables % �& , �*� �	��
��� . In a network-centric realization of the
game, the network solves (II.5) on behalf of each user, result-
ing in an equivalent outcome. The advantage of the latter is that
users need not have access to detailed network state—an unre-
alistic assumption in WAN environments comprised of numer-
ous switches—and users are shielded from engaging in complex

computations. Emulation of selfish user behavior is also the net-
work’s contract to the user with respect to its modus operandi
thus preserving noncooperativeness.

The primary user-network interface is a QoS requirement vec-
tor �

& �'Y\[
which represents user $ ’s bounds on desired end-

to-end QoS. The network system takes �
&

as input and tries to
deliver end-to-end QoS X & such that X & �!� & , at least cost.

A. Distributed QoS Control: Lagrangian Formulation

A.1 Transformation to Normalized Constrained Form

The Lagrangian method starts from the abstract optimization
formulation (II.5). It transforms the constrained optimization
problem into an equivalent unconstrained form. This transfor-
mation leads to a set of independent optimization problems—
one for each switch—which are coupled only by a set of com-
mon Lagrangian multipliers. The latter have a simple interpreta-
tion: the larger the multipliers’ value, the more stringent the QoS
rendered by the system. Nonuniformity in the QoS rendered
at different switches is facilitated by local optimization which
is modulated by the coupling constants, i.e., multipliers. The
decoupled form lends itself to efficient distributed implementa-
tion: the same local optimization procedure—parameterized by
the multipliers—is executed at all switches.

The first task is to transform the minimization problem (II.5)
into an equivalent maximization problem and, in tandem, trans-
form the end-to-end QoS constraints X & � U � �!� & into an additive
form. Let " �I -#�%$ � � �I , N ���	��
 � � 
 �O���	��
��� , where

�&$
is a

positive constant such that
� $(' ��)+* I�, � � �I . For packet loss rate

and delay, X & � U � �!� & takes on the forms

��� �-
����� �

��� � � �� � � , &. 

��
� ��� �0/


��2143 � 145 � � � , &6 


respectively. Using the following change of variables,
7 �I � - �98 � � ��� � �I � 
:	 & � - �98 � � ��� , &. � 
7 �I =

- / I 143 � 145 � 
:	 &=
- , &6 


the constraint components for packet loss rate and delay can be
written in an additive form as L � ��� � 7 ����<; � 	 & ; , = - �"
 4 .
The end-to-end expression for jitter > ��� is more complex de-
pending on its precise definition. We employ the strong form�?)<* � > ��� � , &@ which is equivalent to

�
constraints > 
�� � , &@ ,

one for each
�W�T�	��
���

.
Thus the network game given by (II.5) can be rewritten as

�?)<*�
A
��
����� "

���� (III.1)

subject to L � ����� 7 �
��<; � 	 & ; , = � �!�"
�B � , where " �I , 7 �I ; , 	 & ;
are positive, and

B
is the number of constraints. The normal-

ized constrained optimization problem represents the multidi-
mensional multiple-choice knapsack problem (MMKP). A spe-
cial case of MMKP is the multiple-choice knapsack problem
(MCKP) which has only a single constraint, i.e.,

B - �
. Both

MCKP and MMKP are known to be NP-complete.



A.2 Transformation to Unconstrained Form

Transformation of the normalized constrained optimization
problem (III.1) into an equivalent unconstrained optimization
problem is facilitated by the next theorem which has been
adopted from [27] to fit our context.

Theorem III.2 (Lagrangian Optimization) Let ���& 
�EBE�EF
 ��� & beB
non-negative Lagrange multipliers and

U��& a solution of

�?)<*� A
� ��
��� � "

�
�� �
��
; ���

� ;& ��
�����
7 �
��<;�� E

Then,
U��& is a solution to

�?)<*� A
��
����� "

����
subject to L � ����� 7 ����<; � 	 & �; where

	 & �; - L � � ��� 7 ���
	� ; .
To understand the above theorem, we can consider (III.1) an

optimization problem parameterized by
	 & ; . Theorem III.2 al-

lows us to solve an unconstrained optimization problem to ob-
tain an optimal solution to a constrained optimization problem
with parameters

	 & �; which are not necessarily equal to
	 & ; , the

parameters of the original constrained problem (III.1). Differ-
ent values of

	 & �; are obtained when we vary the multipliers � ;& ’s
and thus

	 & �; is a function of the � ;& ’s. If the multipliers � ;& are
known such that

	 & �; coincides with the original QoS require-
ments, i.e.,

	 & �; - 	 & ; for all = , the original optimization problem
is solved. Since for fixed � ;& , the conditional of Theorem III.2
can be solved exactly in polynomial time, the hardness of the
problem comes into play via � ;& .
A.3 Approximation Procedure for Computing � &

For MCKP, � & can be perturbed systematically so that a global
maximum of the objective function is obtained. This is possible
because of the following simple fact.

Proposition III.3 As � & increases in the interval
� 6 
 1�� � , 	 & �

decreases monotonically.

In a centralized algorithm, we could find the range of � & and
use binary search to make

	 & �
as close to

	 &
as desired. A spe-

cial form of MMKP—i.e., QoS vectors are in total order—also
possesses the monotonicity property. The is given by the next
proposition.

Proposition III.4 Let the QoS vectors 7 �I ; at every switch�
obey a total order. Then as � ;�& increases in the interval� 6 
 1�� � , 	 & �; decreases monotonically for all = .

A.4 Decentralized Implementation of Lagrangian Optimization

The unconstrained optimization problem, for fixed � ;& , is
straightforward to solve. To see this, notice that the uncon-
strained optimization problem can be rewritten as

�?)<*� A
��
����� � "

���� �
��
; ���

� ;& 7 ���� ; � E

For given � ;& ’s, the terms � " � �� � L � ; ��� � ;& 7 � �� ; � , � � �	��
 � � ,
are independent of each other and can be solved separately. In
other words, the sum is maximized iff each individual term is
maximized. Thus the solution is given by

% �& - argmaxI�� " �I � ��
; ���

� ;& 7 �I ;�� E (III.5)

The decentralized approximation procedure consists of two
parts, one, the local optimization carried out at every switch

�
based on (III.5), and two, the global optimization carried out
via an end-to-end feedback loop that exploits Proposition III.4.
First, with respect to computing (III.5), " �I and 7 �I ; are variables
depicting the state of switch

�
hence locally available. Thus the

only nonlocal information needed for computing (III.5) are the� ;& ’s. This can be done by enscribing � ;& in the packet header.
The packet header is shown in Figure III.1.

µ SC Index Charge

Fig. III.1. Packet header format for Lagrangian method.

The SC (service class) Index field is used to enscribe the
service class label computed by (III.5) which is then forwarded
to the GPS switch proper. The Charge field is used to accrue
the relative resource usage cost according to (II.4). Figure III.2
shows the structure of a GPS switch augmented by the procedure
for computing (III.5).

Agent
QoS

indexpayload index

GPS

old SC new SC

µ

Fig. III.2. GPS switch augmented by QoS agent. The latter intercepts incoming
packets, chooses a service class assignment for the packet, and forwards it
to the GPS scheduler.

Now to the update of � & . The Lagrangian multiplier is ad-
justed in an end-to-end feedback loop using Proposition III.4.
Specifically, the receiver of the end-to-end control measures the
end-to-end QoS rendered at the receiver and compares this value
with the target or desired end-to-end QoS which is available at
the receiver. If the rendered end-to-end QoS is excessively good
vis-à-vis the target QoS, then � & is decreased to affect a deprove-
ment in QoS. If the achieved QoS is unsatisfactory vis-à-vis the
target QoS, then � & is increased to affect an improvement in QoS
except when doing so has proved futile—i.e., a feasible solution
may not exist.

Let � - � 	 & � 	 & � ��� 	 & . The update rule for � & is given by

� &��
����� ����
� & 
 if � � � � � � � ,�?)<* Q � & ��� 
 6 R 
 if ��� � � ,� & 1 ��
 if � ' � � and / � � / � & � 6 ,� & 
 otherwise,



where
6 � � � � � � and

� ' 6
are fixed parameters. A fur-

ther refinement that sets the magnitude
�

adaptively is omitted
here due to space constraints. In the case when there are two or
more QoS requirements, we update the Lagrangian multiplier
corresponding to the QoS indicator experiencing the worst per-
formance. The end-to-end part of the decentralized QoS control
is depicted in Figure III.3.

QA GPSQA GPS .  .  .QA GPS

1 2 r

sender receiver

end-to-end feedback

SI RI

Fig. III.3. Distributed QoS control over an ( -hop path.

B. Desirable Properties

Following is a summary of some of SBS’ desirable architec-
tural properties:
� Simple User/Network Interface The user’s interface with the
network system is narrow and well-defined. The user conveys
its QoS requirement vector to the network and the network tries
to deliver the target end-to-end QoS at least cost—i.e., resource
consumption—to the user. A service provider may use the re-
source usage signature maintained by the network to set the ser-
vice price exported to the user; alternatively, it may override it.
� Zero Per-Flow State at Routers SBS exercises per-flow QoS
control with zero per-flow state at routers. This is conducive to
scalability. SBS packet headers are of constant size independent
of hop count.
� Fine Granular Resource Usage Signature The network, as a
by-product of its protocol, maintains a fine granular account of
resource usage by each flow. This information can be used by
the service provider to set its service price advertised to the end
user or it may be used as an internal tool to track resource usage.
� Compatibility with Guaranteed Service Architecture SBS
runs on top of generic GPS-based internetworks, and its trans-
parent handling of traffic flows makes it compatible with guaran-
teed service provisioning through resource reservation and ad-
mission control.

It is interesting that the distributed QoS control obtained from
the Lagrangian formulation is isomorphic to the one arrived at
using the single-switch reduction approach. We omit its discus-
sion due to space constraints.

IV. PERFORMANCE EVALUATION

A. Simulation Set-Up

A.1 Network Configuration

We use the LBNL Network Simulator ns (version 2) as the
basis of our simulation environment. We have modified ns in
order to model our multi-class QoS provision architecture. This
entailed, among other things, implementing the QoS Agents
as separate modules invoked by the routing agent, and imple-
menting a GPS packet scheduler module with extended func-
tionalities. We show results for a vBNS-based network topol-
ogy which is depicted in Figure IV.1. In the current vBNS—

an NSF-sponsored backbone network designated for networking
and high-performance computing research—the backbone runs
at OC-12 ( � 622Mbps) with link latency ranging from 3ms to
15ms. Some of the links that connect member institutions to
the backbone are OC-3 ( � 155Mbps) with link latency of about
1ms, whereas others are DS-3 (e.g., Purdue University). We
make two simplifications: one, we only consider OC-3 drops
from the backbone to institution nodes, and two, we scale down
all bandwidths uniformly by a factor of 10 to reduce simulation
overhead.
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Fig. IV.1. vBNS-like wide area network topology.

A.2 Traffic Configuration

The traffic configuration is shown in Table I. There are in to-
tal 15 individual flows of which 11 are application traffic with
various QoS constraints (shown in separate QoS requirement
configuration tables), and 4 are background traffic which are
used to inject further resource contention and system variability.
This particular traffic configuration has been engineered to cre-
ate a number of localized hot spots where several connections
are multiplexed onto the same output link thereby potentially
causing severe contention. There are two main bottlenecks. The
first one is from ) � � to ) $ and has a load factor or utilization of
0.97. The second one is from ) � to ) ��� and has a load factor of
1.03. Both are shown highlighted in Figure IV.1.

Traffic Flow
Flow No. Src. Dest. Rate (Mbps)

1 s1 r2 2.99
2 s2 r4 8.53
3 s3 r5 10.24
4 s4 r5 2.99
5 s5 r6 3.98
6 s6 r1 12.05
7 s7 r4 2.99
8 s8 r2 2.99
9 s9 r7 2.99

10 s10 r2 7.88

Application

11 s11 r3 2.59
12 s21 r2 2.05
13 s22 r6 5.85
14 s23 r4 5.85

Background

15* s24 r3 4.81
TABLE I

TRAFFIC CONFIGURATION



Lagrangian SWR Fixed ClassFlow Pls. Req.
pls. vio. charge U/P pls. vio. charge U/P pls. vio. charge U/P

1 .05 .0347 .07 49.65 .0187 .0365 .03 49.64 .0195 .0487 .43 49.51 .0115
2 .05 .0321 .00 39.68 .0252 .0341 .00 39.66 .0252 .0321 .00 39.68 .0252
3 .05 .0319 .00 59.68 .0168 .0338 .00 59.66 .0168 .0316 .00 59.68 .0168
4 .01 .0004 .01 60.00 .0165 .0002 .01 60.00 .0165 .0000 .00 60.00 .0167
5 .01 .0003 .01 60.00 .0165 .0003 .01 60.00 .0165 .0000 .00 60.00 .0167
6 .05 .0322 .00 49.68 .0201 .0341 .00 49.66 .0201 .0320 .00 49.68 .0201
7 .01 .0003 .01 30.00 .0330 .0004 .01 30.00 .0330 .0000 .00 30.00 .0330
8 .05 .0355 .08 49.65 .0185 .0363 .11 49.65 .0179 .0490 .43 49.51 .0115
9 .01 .0000 .00 50.00 .0200 .0000 .00 50.00 .0200 .0000 .00 50.00 .0200
10 .05 .0272 .01 29.74 .0333 .0264 .00 29.74 .0336 .0175 .00 29.83 .0335
11 .001 .0000 .00 60.00 .0167 .0000 .00 60.00 .0167 .0000 .00 60.00 .0167������� ��� 	�
� ������� ��� =���� ������� ��� =#= =

TABLE II

LAGRANGIAN METHOD, SINGLE SWITCH REDUCTION, AND THE FIXED ALLOCATION SCHEME.

A.3 Problem Instance Generation

To test the robustness of our algorithm and compare its perfor-
mance against that of reservation- and FIFO-based schemes, we
employ a problem instance generator that takes Table I as input
and outputs the QoS requirements associated with the applica-
tion flows. We use a random service class assignment method
for this purpose whereby for each flow, at every switch, the flow
is randomly assigned (permanently) to a fixed service class. We
then let the system evolve in time and observe the measured end-
to-end QoS received by each application flow. These values—
mean packet loss, mean delay, and jitter—are then chosen as
“handles” in generating final problem instances.

They are handles in the sense that they are subsequently used
to generate three separate problem instances which we clas-
sify as resource-plentiful (alternatively “easy”), resource-scarce
(alternatively “difficult”), and in-between. Since we can al-
ways shift or translate the QoS requirement indicators to make
the QoS assignment problem easier (upwards shift) or harder
(downwards shift) given a fixed resource configuration, by the
shifting operation we are able to identify instances where the
problem instance changes its character from instrinsically easy
to intermediate to difficult. For the “easy” and “difficult” prob-
lem categories, we choose (by trial-and-error) instances that are
as close to the intermediate stage (i.e., transition) as possible
to avoid generating trivial instances for which no algorithm can
find a feasible QoS assignment or almost all algorithms can do
so.

B. Lagrangian Method, Single Switch Reduction and Fixed
Reservation-Based Allocation

Table II shows the performance of Lagrangian method, single
switch reduction and a fixed service class assignment scheme at
delivering end-to-end QoS given the flows’ QoS requirements.
All switches possess three service classes of which one is set
aside for the background traffic. The user population consists
of 0.05-, 0.01-, and 0.001-packet loss rate applications (column
2), and the end-to-end packet loss rate they received is shown in
the column marked pls.. vio. denotes the fraction of instances,
over time, that a QoS requirement is violated, and charge de-
notes the total cost accrued by all packets belonging to the same
connection. Comparing Lagrangian method and single switch
reduction, we observe that the QoS requirements of all flows are
satisfied. In terms of minimizing cost, they achieve comparable

L 7 ��� , a measurement of how well the optimization problem
is solved.

The Fixed Class algorithm is a static, fixed service class allo-
cation scheme where the service class assignment, once picked,
is held invariant during a connection’s lifetime. It is an off-line,
centralized QoS allocation scheme that assigns a strict prior-
ity ordering based on a connection’s QoS requirement, giving
higher precedence to stringent-QoS applications over less strin-
gent ones. A service class assignment is then chosen such that
this precedence condition is satisfied at every switch for every
flow. The Fixed Class algorithm is used as a reference point in
evaluating the relative performance. We observe that the former
satisfies the end-to-end packet loss rate requirements for all con-
nections. However, one noticeable difference with Lagrangian
method and single switch reduction is the high violation penalty
flows 1 and 8 incur under the Fixed Class assignment.

C. Dynamical Properties of Lagrangian Method

Flow 10 is one of the connections that goes through one of
the two bottleneck links, � ) � 
 ) � � � . Figure IV.2 (top) show the
trace of the end-to-end QoS experienced by flow 10. We can see
that flow 10’s QoS requirement 0.05 is satisfied without a single
violation. Figure IV.2 (bottom) shows flow 10’s service class
assignment at bottleneck switch ) � . We observe that flow 10 is
assigned to class 2 stays there throughout.
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Fig. IV.2. Dynamics of flow 10. Top: Trace of end-to-end packet loss. Bottom:
Trace of service class assignment on � 8 .



Flow 1 is one of the connections that travels through both
of the two bottleneck links. Figure IV.3 (top) shows the end-
to-end packet loss trace of flow 1. We observe that there are
four brief instances when the QoS requirement is violated. Fig-
ure IV.3 (middle) shows that on switch ) �#� flow 1 is assigned
to service class 2. Figure IV.3 (bottom) shows the service class
assignment trace for flow 1 on switch ) � . We observe that al-
though flow 1 is most of the time assigned to the superior service
class (here it is class 1), occasionally there are excursions to ser-
vice class 2 which, in turn, are correlated to the elevation in the
end-to-end packet loss rate.
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Fig. IV.3. Dynamics of flow 1. Top: Packet loss trace. Middle: Service class
assignment trace on

� � 8 8�� ����� . Bottom: Service class assignment trace on� � 8�� � 8	� � .
The reason for the temporary excursions is that when the QoS

Agent at ) � notices that the end-to-end QoS delivered is overly
good for flow 1, then service class 2 becomes the locally optimal
choice for flow 1, but this reassignment is not sustainable in
the long run without violating flow 1’s QoS requirement. Thus
the switch back to service class 1 momentarily thereafter. We
omit the description of the behavior of other flows due to space
constraints.

D. Robustness and Comparative Performance

In this section, we show the robustness of our algorithm on
three classes of problem instances—resource plentiful (“easy”),
in-between, and resource scarce (“difficult”)—with six in-
stances in each category generated using the random service
class assignment scheme with shifting. We also compare the
performance of our algorithm against the fixed reservation-
based scheme as well as a FIFO-based scheme and random
(fixed) allocation scheme. On average, we expect the random
fixed allocation scheme to perform similar to the FIFO scheme
due to the uniform nature of the service weights. Table III sum-
marizes the comparative QoS performance results. The numbers

inside the table indicate the number of application flows whose
QoS requirements are violated. Thus “0” means that QoS re-
quirements of all applications were satisfied.

We observe that for instance in the “easy” problem class,
our algorithm (Lagrangian) performs perfectly with the fixed
reservation-based scheme close behind. However, both FIFO-
and random service class assignment-based schemes exhibit vi-
olations in the range 2–5. This is so since although we clas-
sify this problem class as “easy”, the resource plentiful and re-
source scarce instances were chosen to be as close to the inter-
mediate problem instances as possible. Thus what is easy to
Lagrangian method and the fixed reservation-based scheme is
not necessarily easy for the FIFO and random schemes. For the
in-between instances we observe violations occurring even for
Lagrangian (0–2 range) and for the resource scarce instances.
Overall, we observe that Lagrangian is superior to the fixed
reservation-based scheme and both are superior to the FIFO and
random schemes. For the in-between cases, Lagrangian method
performs much better than the single switch reduction scheme.
On the other hand, for the resource plentiful and resource scarce
instances, they have achieved almost the same results.

E. Comparison of Single Switch Reduction and Lagrangian
Method

Table IV shows the same comparative performance results on
three of problem type—resource plentiful, in-between, and re-
source scarce—for three-dimensional QoS requirement vectors
containing packet loss rate, delay, and jitter. The numbers in the
table show the number of flows whose QoS requirements were
violated. We observe that the Lagrangian method performs com-
parably with single switch reduction.

Resource Plentiful In-between Resource ScarceInstance
Lagr. SWR Lagr. SWR Lagr. SWR

1 0 0 3 4 6 4
2 0 0 1 1 3 2
3 0 0 2 2 3 6
4 0 0 3 0 3 3
5 0 0 2 2 6 2
6 0 0 3 2 4 4

TABLE IV

THREE-DIMENSIONAL QOS VECTOR: PACKET LOSS RATE, DELAY, AND

JITTER.

F. User Population QoS Diversity

Table V shows a user pool with diverse QoS requirements
with packet loss bounds of 0.001, 0.005, 0.008, 0.01, 0.02, and
0.05, and the QoS rendered by the system. All QoS require-
ments are being met for both Lagrangian method and the Fixed
Assignment scheme. This is in the context of a 2-service class
system. In general, for a diverse user population make-up more
service classes are needed to provide refined services.

V. CONCLUSION

We have presented an architecture for noncooperative multi-
class QoS provision in many-switch systems. End-to-end QoS
control is facilitated by decentralized control based on La-
grangian optimization which, in turn, is amenable to distributed



Resource Plentiful In-between Resource ScarceInstance
Lagr. SWR fix. fifo ran. Lagr. SWR fix. fifo ran. Lagr. SWR fix. fifo ran.

1 0 0 0 4 4 0 2 1 2 1 5 5 4 4 5
2 0 0 0 2 2 0 1 2 2 2 2 3 7 3 5
3 0 0 0 3 2 1 1 0 5 2 4 4 3 5 4
4 0 0 0 5 2 1 3 0 3 3 3 3 3 3 4
5 0 0 1 4 3 3 0 1 5 3 4 3 3 5 4
6 0 0 0 4 3 2 2 1 4 3 3 5 4 4 3

TABLE III

COMPARATIVE PERFORMANCE WITH RESPECT TO THREE CLASSES OF PROBLEMS—RESOURCE PLENTIFUL, IN-BETWEEN, AND RESOURCE

SCARCE—WITH SIX PROBLEM INSTANCES IN EACH CATEGORY.

implementation. An appealing property of our architecture is
that selfish user mode is preserved without burdening the user
with complex resource allocation computations. This imparts
our system with a well-defined and practical resource allocation
paradigm—selfishness—on which resolution of resource con-
tention conflicts are based.

Lagrangian Fixed ClassFlow Pls. Req.
pls. vio. charge pls. vio. charge

1 .05 .0347 .07 49.65 .0487 .43 49.51
2 .05 .0321 .00 39.68 .0321 .00 39.68
3 .05 .0319 .00 59.66 .0316 .00 59.68
4 .005 .0004 .01 60.00 .0000 .00 60.00
5 .02 .0003 .01 60.00 .0000 .00 60.00
6 .05 .0322 .00 49.68 .0320 .00 49.68
7 .008 .0003 .01 29.99 .0000 .00 30.00
8 .05 .0355 .08 49.65 .0490 .43 49.51
9 .01 .0000 .00 50.00 .0000 .00 50.00
10 .05 .0272 .01 29.74 .0175 .00 29.83
11 .001 .0000 .00 60.00 .0000 .00 60.00

TABLE V

DIVERSE QOS REQUESTS

Complementing the simple user approach, our distributed
control protocol is easily implementable as a preprocessing step
in routers with GPS packet scheduling. Pricing and account-
ing are performed at a fine-granular level (per packet) where
usage-based pricing is efficiently achieved. This leads to a sim-
ple network realization. SBS is scalable, efficient, and adaptive,
and it complements the guaranteed service architecture, shar-
ing a common network substrate comprised of GPS routers. It
is also a functional complement, provisioning QoS efficiently
commensurate with user needs, albeit at the cost of weaker pro-
tection.
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