AdSec: A System for Adaptive Network Security

Kihong Park
Network Systems Lab &
CERIAS
Dept. of Computer Sciences
Purdue University
park@cs.purdue.edu

Joint: E. Spafford (co-PI), M. Tripunitara, G. Nalawade

Network Systems Lab & CERIAS
Motivation

- Network environment \rightarrow Secure QoS
Motivation (cont.)

Goal Facilitate Secure QoS

- User plane protection
- Control plane protection
- Minimal footprint
Technical Challenges

- Integrate QoS & security architectures
- Minimize security footprint
- Fault-tolerance
- Programmability
- Interoperability
Approach

- User plane protection: end-to-end
 - Security services: confidentiality, integrity, authentication, access control
 - Property of cryptographic protocols

→ well-understood
Control plane protection
- Proactive: authentication/integrity of certain signalling
- Reactive:
 - too costly to make 100% proactive (e.g., Gbps switching)
 - security-QoS trade-off
 - selective, controlled introduction of “security holes”
 - reactive management
Approach (cont.)

- Adaptive security
 - Combination of proactive/reactive rendering of security services
 - Multiple levels of service
 - Monitoring, control, and actuation
 - Active resource management: control/scheduling
 - Deterrent effect
Adaptive Security Architecture

Logging and Access Control

Switch/Router/Network Element

Monitoring

Control

Actuation

- Traffic monitoring
- Control input
- Filtering and data reduction
- On-line/off-line control
- Hierarchy management
- Information forwarding
- Control messaging
Security Middleware Layer

Network Systems Lab & CERIAS
- Hierarchical structure for resiliency and scalability
- Byzantine agreement protocols (2/3 majority) for isolating compromised nodes
Overview of AdSec

Function
Programmable network management system for adaptive network security

- Implementation of any logical hierarchy
- Monitoring, control, and actuation
- SNMP based
- User programmable
AdSec: Components

- MIB Dependency Relation (MDR) → config.
- Managers → snmpd
- Agents
- Monitor function → wrapper
- Control function → wrapper
- System libraries
MIB Dependency Relation

```text
SNMP SET
SNMP GET
```

Network Systems Lab & CERIAS
Monitor & Control Functions

- Monitor function F: SNMP GET
- Control function G: SNMP SET

→ user programmable

- Function wrappers
- Transparent read/write
 - local vs. remote MIB
 - OID ↔ (IP, Port) → physical mapping
AdSec: Implementation Details

- Prototype system SNMP version 1
- UC Davis snmpd implementation
 - Others (e.g., Sun Microsystems) possible
- CMU SNMP library
- Functions:
 - Intrusion detection
 - Anomaly detection
 - Automatic control
Benchmark: Set-up A
Benchmark: Set-up B
On-going & Future Work

- Asynchronous extension: SNMP Trap
- Extensive monitor/control function libraries
- Integration with network management
- Active resource scheduling
- Integration with QoS management