
A Parallel Conjugate
Gradient Routine
Noah Trupin and Xiaotao Yang

Contents
● Project Summary
● What is the Conjugate Gradient Routine?
● Krylov Vectors for Non-Square Matrices
● Comparisons to SPLSQR
● Naive Parallelization
● Partitioning for Multiple Tasks
● Calculating the Solution Vector
● tvecmul
● Testing Process
● Memory Usage
● Some Benchmarks
● Takeaways
● Project Summary, Revisited
● Ideas for Future Improvement

conjugate vector (red) vs. gradient descent (green) for n = 2.
from Wikipedia

Project Summary

- Implement a memory-efficient, parallel
routine for solving large sparse systems
in the form Ax = b (or Gm = d).

- Project Goals:
- Reduce memory usage from original LSQR

routine.
- Increase convergence speed.
- Parallelize components. We have cores,

we should use them!
- Personal Goals:

- Learn more about research! (started
project as a first-semester freshman)

- Complete the project goals.

*image from Huang et al. Original partitioning algorithm.

What is the Conjugate Gradient Routine?

- An iterative Krylov subspace method for
solving sparse systems of linear equations
of the form Ax = b (or Gm = d).

- Works on square systems–we can fix that
using a biconjugate adaptation (dealing
with transpose matrices).

- Applicable to matrices too large for solving
with direct methods.

- Finding a convergent x with respect to
matrix A and vector b behaves similarly to
gradient descent; we can use this to
backtrack and treat rounding errors.

*image from Wikipedia

Krylov Vectors for Non-Square Matrices

- Column space of b under the first r
powers of A.

- Useful for approximating high-dimensional
linear algebra problems.

- Composable on square matrices–ours is
rectangular!

- We combine our matrix and its transpose
to simulate a square matrix to generate a
Krylov subspace for performing the
conjugate gradient method.

Comparison to SPLSQR

- Focused on minimizing computational
cost via aggressive parallelization.

- Designed for use on non-square matrices.
- Involves factoring the matrix into

orthogonal and upper triangular
matrices.

- Not numerically stable for ill-conditioned
systems. Ill-formed or unexpected inputs
often cause segfaults.

- Focused on minimizing communication
overhead via small batch communication
and a single-threaded iterative method
with nested parallel components.

- Generalizable to non-square matrices
using biconjugate methods / multiplication
with transpose.

- More numerically stable through
BiCGSTAB technique. Ill-formed or
unexpected inputs will fail to converge
without error (itcount = 30,000*)

SPLSQR Conjugate Gradient Routine

*taken from Shen and Gao.

Naive Parallelization

- naive parallelization: parallelizing every
loop construct without considering
operation.

- loops with order-dependent operations
should not be parallelized*.

- loops with order-independent operations
should be parallelized.

a non-parallelizable loop

* achievable with blocking. As always, context determines application. We did not parallelize order-dependent loops in this
project.

a non-parallelizable loop

a parallelizable loop

Partitioning for Multiple Tasks

- Goal: Find balance between
communication overhead and computation
time.

- Observations: in practice, the balance
occurs when n = 1 (we do not partition the
matrix) and instead perform batch
multiplication on subsections of the matrix.
When doing so we follow a similar
structure along the band. More on this
later in presentation.

- Also, partitions often appear ill-conditioned
and CGR does not converge in reasonable
time.

*image from Huang et al. Original partitioning algorithm.

Partitioning for Multiple Tasks

From paper*:

(05) Partition matrices: Ak, Ad, and Adt

(06) Aki ← Ak (partitioning across columns)

(07) Adi ← Ad (partitioning across rows)

(08) Adti ← Adt (partitioning across columns)

where:

- nk: rows in kernel submatrix.
- nd: rows in damping submatrix.
- A: our matrix (also referred to as G).
- Ak: kernel submatrix. Ak ∈ 𝐑nk x m

- Ad: damping submatrix. Ad ∈ 𝐑nd x m

- Adt: transpose of Ad.
- Aki: piece of kernel submatrix on task i.
- Adi: piece of damping submatrix on task i.
- Adt: piece of transpose matrix on task i.

*He Huang et al.

Partitioning for Multiple Tasks

Our implementation*:

(05) Partition matrices: Ak, Ad, and Adt

(06) Aki ← Ak (partitioning across columns)

(07) Adi ← Ad (partitioning across rows)

(08) Adti ← Adt (partitioning across columns)

Instead: calculate partition transpose on-the-fly.

where:

- nk: rows in kernel submatrix.
- nd: rows in damping submatrix.
- A: our matrix (also referred to as G).
- Ak: kernel submatrix. Ak ∈ 𝐑nk x m

- Ad: damping submatrix. Ad ∈ 𝐑nd x m

- Adt: transpose of Ad.
- Aki: piece of kernel submatrix on task i.
- Adi: piece of damping submatrix on task i.
- Adt: piece of transpose matrix on task i.

*He Huang et al.

Calculating the Solution Vector

- We declare a variable t = r / a(xx) as
metric of convergence. When t reaches
specific tolerance level* we determine the
CGR has converged.

- Utilize scalar quantities as determinants of
proximity to convergence rather than
checking vectors. Saves space, compute,
and unneeded complexity.

*10^-7, from Paige and Saunders

Calculating the Solution Vector

From paper*:

(01) Iterative until converged

(02) Calculate: y ← A * x + y

(03) Kernel component:

(04) yki ← Aki * xi (partials)

(05) yk ← sum(yki) (sum partials)

(06) Damping component:

(07) Communicate: build x’i.

(08) ydi ← Adi * x’i

(09) Calculate: x ← AT * y + x

(10) Kernel component:

(11) xki ← AkTi * yk

(12) Damping component:

(13) Communicate: build yd’i.

(14) xdi ← Adti * yd’i

(15) Construct orthogonal transformation

(16) Test convergence

*He Huang et al.

Calculating the Solution Vector

From paper*:

(01) Iterative until converged

(02) Calculate: y ← A * x + y

(03) Kernel component:

(04) yki ← Aki * xi (partials)

(05) yk ← sum(yki) (sum partials)

(06) Damping component:

(07) Communicate: build x’i.

(08) ydi ← Adi * x’i

(09) Calculate: x ← AT * y + x

(10) Kernel component:

(11) xki ← AkTi * yk

(12) Damping component:

(13) Communicate: build yd’i.

(14) xdi ← Adti * yd’i

(15) Construct orthogonal transformation

(16) Test convergence

*He Huang et al.

Calculating the Solution Vector

From paper*:

(01) Iterative until converged

(02) Calculate: y ← A * x + y

(04) yki ← Aki * xi (partials)

(05) yk ← sum(yki) (sum partials)

(07) Communicate: build x’i.

(08) ydi ← Adi * x’i

(09) Calculate: x ← AT * y + x

(11) xki ← AkTi * yk

(13) Communicate: build yd’i.

(14) xdi ← Adti * yd’i

2 rounds of communication and numerous small
vecmuls per iteration, more overhead than large
vecmul. Can we improve this?

*He Huang et al.

Calculating the Solution Vector

Our implementation:

(01) u ← b/||b||

(02) v ← ATu/||ATu||

(03) w ← v (copy)

(04) Calculate initial values (α, β, etc)

(05) Iterate until converged

(06) u ← (Av - αu)/||Av - αu||

(07) v ← (ATu - βv)/||ATu - βv||

(08) Update intermediate values

(09) Update solution vectors

(10) Test for convergence

Calculating the Solution Vector

Our implementation:

(01) u ← b/||b||

(02) v ← ATu/||ATu||

(03) w ← v (copy)

(04) Calculate initial values (α, β, etc)

(05) Iterate until converged

(06) u ← (Av - αu)/||Av - αu||

(07) v ← (ATu - βv)/||ATu - βv||

(08) Update intermediate values

(09) Update solution vectors

(10) Test for convergence

Only 2 vecmuls per iteration. No need to store
transpose, normalize values to prevent overflow
(problem for large systems).

Calculating the Solution Vector

Our implementation:

(01) u ← b/||b||

(02) v ← ATu/||ATu||

(03) w ← v (copy)

(04) Calculate initial values (α, β, etc)

(05) Iterate until converged

(06) u ← (Av - αu)/||Av - αu||

(07) v ← (ATu - βv)/||ATu - βv||

(08) Update intermediate values

(09) Update solution vectors

(10) Test for convergence

We love scalar quantities. Why store a vector of
multipliers when a single scalar will do?

 tvecmul: O(mn) matrix transpose and vector multiplication

Original CSR vecmul routine, for comparison.

1. Loop over row_ptr array
2. Take dot product of row and input vector

Transpose → vecmul = O(m2n2). Not good!

1. Loop over row_ptr
2. Take columnwise dot product with input

vector

*adapted from Paige and Saunders, 1982.

Testing Process

Parameters / Flags

- Compilation: -03
- MPI Config: slots=25
- Running:

- OMP_NUM_THREADS = 8
- nprocs: 25

- Valgrind Tools:
- Massif
- Callgrind
- Default (Valgrind)

Procedure

1. Run each program 2 times. We want the OS
to cache accessed files so we get “hot”
access during testing*.

2. Memory Profiling
a. Compile programs without optimization.
b. Run with Massif.
c. Extract graphs and reset environment.
d. Repeat 3 times.

3. Speed Test
a. Compile programs with optimization (-Ofast).
b. Run with Valgrind
c. Take user time statistics.
d. Repeat 3 times.

4. For fun, we could test this on both Slurm and
user space. For small datasets, we test on
user space.

*We can do this in practice by running a low-overhead utility to read the file before execution.

Memory Usage

From paper*:

Our implementation*:

*Massif outputs.

What does this mean?

How to interpret this data: Massif takes
snapshots at semi-regular intervals throughout
execution. “:” denote regular snapshots, “@”
detailed, “#” peak.

- One large allocation at beginning of
execution (peak usage).

- Many copies made–we only need one set
of data!

- Low on instructions, but high on memory.
- Detailed snapshots mid-solving–lots of

data moving.

From paper*:

*Massif outputs.

What does this mean?

How to interpret this data: we split operations
across four processes while testing. Multiply the
memory usage by 25 for more appropriate
figures.

- One (smaller!) allocation at the beginning.
- Detailed snapshots occur while loading,

stable computation.
- Fewer allocations == less overhead.
- Rely on the stack for smaller values (let

Fortran handle dynamically) and
repurpose our allocation instead of making
new ones.

Our implementation*:

*Massif outputs.

Some Benchmarks (nel ≈ 1.3*108, n = 10, slots = 25)

- User Time: 18m 45s
- Initializing Time: 0.6s
- Matrix Loading Time: ~8m
- Time to Convergence: ~9m
- Peak Memory Usage: 1.519 GB
- Successful Runs: 9/10, 90%

Notes: Segfaulted (somewhat randomly) during
development. Numerically unstable method;
overflows, division by 0, etc.

- User Time: 13m 12s
- Initializing Time: 0.03s
- Matrix Loading Time: ~5m
- Time to Convergence: ~7m
- Peak Memory Usage: 17.84 * 25 = 446

MB
- Successful Runs: 10/10, 100%

Notes: We trade off minimal operations for
memory and numerical stability. Remains
slightly faster.

LSQR Routine Parallel CGR

Takeaways

- Fortran utilizes pass-by-reference. Let’s
take advantage of that!

- We only use our matrices / vectors once
per execution. We don’t need to make
copies! Modify in-place.

- Paige and Saunders uses
single-precision tolerance, but we stored
double-precision vectors during
computation–unnecessary*!

- We save around 1 single-precision
solution vector's worth of storage per
iteration–amounting to ~1 GB (~60%) in
test set.

- If we need to pass data frequently or in
large quantities, parallelization is
probably a bad idea.

- We observed MPI latency at 3.42x
execution speed for large vectors (on the
order of 100,000 rows, tested with vecmul
and tvecmul).

- In short: large single-threaded vecmul with
execution time of 4.52 seconds took
~15.45 second in parallel.

On Memory Efficiency On Parallelization

*Double-precision required while loading. We can shorten the variables during computation.

Takeaways

- Re-implemented Paige and Saunders’
Conjugate Gradient Routine.

- Added parallel segments and
partitioning to code–we don’t run by
default on Bell, but the option exists.

- Reduced time complexity and memory
footprint of matrix loading.

- Cleaned codebase, reduced
redundancies, and greatly reduced overall
memory usage.

- Find a partitioning algorithm that balances
computation time and communication
overhead (though this may exist!)

- Implement an external preconditioner
(outside scope of project, great idea for
future).

- Reduce matrix loading to
sub-O(n2)–improved from O(n3) original
but still sub-optimal.

What We Achieved What We Didn’t Achieve

*Double-precision required while loading. We can shorten the variables during computation.

Project Summary, Revisited

- Project Goals:
- ✓ Reduce memory usage from original

LSQR routine.
- ✓ Increase convergence speed.
- ✓ Parallelize components. We have cores,

we should use them!
- Personal Goals:

- ✓ Learn more about research! (started
project as a first-semester freshman)

- ✓ Complete the project goals.

We received a fair amount of negative results
(forced to change algorithms, block operations
instead of full partitions, etc), but we did achieve
each goal.

*image from Huang et al. Original partitioning algorithm.

Ideas for Future Improvement

- Other than developing a fully novel
method, I do not see obvious ways of
increasing memory efficiency.

- Performing further elimination /
bandwidth reduction on the matrix leads
to a lower memory footprint during
computation but greater overall, may be
computationally expensive.

- Running an external preconditioner over
the data will lower net usage but not peak.

- GPUs specialize in fast matrix and vector
multiplication and parallel computing.
Future implementations could rely on
CUDA or OpenGL rather than OpenMPI
for reduced latency and increased
computation speed.

- We could precondition our routine to
speed up convergence as seen in a
biconjugate gradient method*. Without
prior knowledge of data this may be
computationally expensive.

On Memory Efficiency On Parallelization / Efficiency

*this method is numerically unstable. not good!

References

A scalable parallel LSQR algorithm for solving large-scale linear system for
tomographic problems: a case study in seismic tomography. Huang et al. 2013.

LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares.
Paige and Saunders. 1982.

An Introduction to the Conjugate Gradient Method Without the Agonizing Pain.
Shewchuk. 1994.

Full-Wave Ambient Noise Tomography, modified from Shen and Gao. 2018.

