A Parallel Conjugate
Gradient Routine

Noah Trupin and Xiaotao Yang

Contents
e Project Summary
e What is the Conjugate Gradient Routine?
e Krylov Vectors for Non-Square Matrices
e Comparisons to SPLSQR
e Naive Parallelization
e Partitioning for Multiple Tasks
e Calculating the Solution Vector
e tvecmul
e Testing Process
e Memory Usage
e Some Benchmarks
e Takeaways
e Project Summary, Revisited
e Ideas for Future Improvement

conjugate vector (red) vs. gradient descent (green) for n = 2.

from Wikipedia

g4

Project Summary

- Implement a memory-efficient, parallel
routine for solving large sparse systems
in the form Ax = b (or Gm = d).
- Project Goals:
- Reduce memory usage from original LSQR
routine.
- Increase convergence speed.
- Parallelize components. We have cores,
we should use them!
- Personal Goals:
- Learn more about research! (started
project as a first-semester freshman)
- Complete the project goals.

*image from Huang et al. Original partitioning algorithm.

Matrix A

What is the Conjugate Gradient Routine?

- An iterative Krylov subspace method for
solving sparse systems of linear equations
of the form Ax = b (or Gm = d).

- Works on square systems—we can fix that
using a biconjugate adaptation (dealing
with transpose matrices).

- Applicable to matrices too large for solving
with direct methods.

- Finding a convergent x with respect to
matrix A and vector b behaves similarly to
gradient descent; we can use this to
backtrack and treat rounding errors.

*image from Wikipedia

Krylov Vectors for Non-Square Matrices

Column space of b under the first r

powers of A.

Useful for approximating high-dimensional

linear algebra problems.

Composable on square matrices—ours is

rectangular!

We combine our matrix and its transpose K, (A,b) = span {b, Ab, A*b, ..., A" 1b}.
to simulate a square matrix to generate a

Krylov subspace for performing the

conjugate gradient method.

Comparison to SPLSQR

SPLSQR Conjugate Gradient Routine

- Focused on minimizing computational - Focused on minimizing communication
cost via aggressive parallelization. overhead via small batch communication

- Designed for use on non-square matrices. and a single-threaded iterative method

- Involves factoring the matrix into with nested parallel components.
orthogonal and upper triangular - Generalizable to non-square matrices
matrices. using biconjugate methods / multiplication

- Not numerically stable for ill-conditioned with transpose.
systems. lll-formed or unexpected inputs - More numerically stable through
often cause segfaults. BiCGSTAB technique. lll-formed or

unexpected inputs will fail to converge
without error (itcount = 30,000%)

*taken from Shen and Gao.

Naive Parallelization

- naive parallelization: parallelizing every i 1, ;ﬁax;x
; PP f_d = dampi
loop construct without considering e

call csm_insert_row(1, idx, coef_dp, 0.0_DP)

operation.

- loops with order-dependent operations
should not be parallelized®.

- loops with order-independent operations

should be parallelized. i =1, ncol
tmp = w(i) / rho

w(i) v(i) - theta * tmp

a non-parallelizable loop

x(1) x(i) + phi * tmp
sig(i) = sig(i) + tmp =*x 2

a parallelizable loop

* achievable with blocking. As always, context determines application. We did not parallelize order-dependent loops in this
project.

Partitioning for Multiple Tasks

Goal: Find balance between
communication overhead and computation
time.

Observations: in practice, the balance
occurs when n = 1 (we do not partition the
matrix) and instead perform batch
multiplication on subsections of the matrix.
When doing so we follow a similar
structure along the band. More on this
later in presentation.

Also, partitions often appear ill-conditioned
and CGR does not converge in reasonable
time.

*image from Huang et al. Original partitioning algorithm.

Matrix A

Partitioning for Multiple Tasks

From paper®: where:

(05) Partition matrices: Ak, Ad, and Adt - nk: rows in kernel submatrix.
- nd: rows in damping submatrix.

(06) Aki — Ak (partitioning across columns) - A: our matrix (also referred to as G).

(07) Adi < Ad (partitioning across rows) - Ak:kernel submatrix. Ak & R™ "
- Ad: damping submatrix. Ad € R"¥*™
(08) Adti — Adt (partitioning across columns) - Adt: transpose of Ad.

- Aki: piece of kernel submatrix on task /.
- Adi: piece of damping submatrix on task i.
- Adt piece of transpose matrix on task /.

*He Huang et al.

Partitioning for Multiple Tasks

Our implementation™
(05) Partition matrices: Ak, Ad, and Adt
(06) Aki «— Ak (partitioning across columns)

(07) Adi «— Ad (partitioning across rows)
08} Adti—Adt{partitiont I f

Instead: calculate partition transpose on-the-fly.

*He Huang et al.

where:

- nk: rows in kernel submatrix.

- nd: rows in damping submatrix.

- A: our matrix (also referred to as G).

- Ak: kernel submatrix. Ak € R"™xm

- Ad: damping submatrix. Ad € R"*™

- Aki: piece of kernel submatrix on task /.

- Adi: piece of damping submatrix on task i.

Calculating the Solution Vector

- We declare a variable t = r/ a(xx) as
metric of convergence. When t reaches
specific tolerance level* we determine the
CGR has converged.

- Utilize scalar quantities as determinants of
proximity to convergence rather than
checking vectors. Saves space, compute,
and unneeded complexity.

*107-7, from Paige and Saunders

Calculating the Solution Vector

From paper®:
(01) Iterative until converged

(02) Calculate:y«— A*x+y

(03) Kernel component:
(04) yki «— Aki * xi (partials)
(05) yk «— sum(yki) (sum partials)

(06) Damping component:
(07) Communicate: build x.
(08) ydi < Adi * x’i

*He Huang et al.

(09) Calculate: x — AT *y + x

(10) Kernel component:

(11) xki — AK'i * yk

(12) Damping component:

(13) Communicate: build yd’i.

(14) xdi — Adti * yd'i
(15) Construct orthogonal transformation

(16) Test convergence

Calculating the Solution Vector

From paper®:
(01) Iterative until converged

(02) Calculate:y«— A*x+y

(03) Kernel component:
(04) yki «— Aki * xi (partials)
(05) yk «— sum(yki) (sum partials)

(06) Damping component:

(07) Communicate: build x’i.

(08) ydi < Adi * X'i

*He Huang et al.

(09) Calculate;: x — AL *y + x

(10) Kernel component:

(11) xki < AKLi * yk

(12) Damping component:

(13) Communicate: build yd'i.

(14) xdi < Adti * yd'i

(15) Construct orthogonal transformation

(16) Test convergence

Calculating the Solution Vector

From paper®:

(01) Iterative until converged
(02) Calculate: y — A*x +y

(04) yki < AKi * xi (partials)

(05) yk < sum(yki) (sum partials)
(07) Communicate: build x’i.
(08) ydi «— Adi * x’i

(09) Calculate: x < AT *y + x

*He Huang et al.

(11) xki — AKTi * yk
(13) Communicate: build yd’.

(14) xdi — Adti * yd

2 rounds of communication and numerous small
vecmuls per iteration, more overhead than large
vecmul. Can we improve this?

Calculating the Solution Vector

Our implementation:

(01) u < b/|b|| (08) Update intermediate values
(02) v — ATu/||ATu|| (09) Update solution vectors
(03) w — v (copy) (10) Test for convergence

(04) Calculate initial values (a, B, etc)
(05) Iterate until converged
(06) u <« (Av-au)/|Av - aul|

(07) v (ATu-BNIATu - BV|

Calculating the Solution Vector

Our implementation:

(01) u — b/|b||

(02) v« ALu/|ATu||

(03) w — v (copy)

(04) Calculate initial values (a, B, etc)
(05) Iterate until converged

(06) u <« (Av-au)/|Av - aul|

(07) v« (Alu - BVIAIu - BV

(08) Update intermediate values
(09) Update solution vectors

(10) Test for convergence

Only 2 vecmuls per iteration. No need to store
transpose, normalize values to prevent overflow
(problem for large systems).

Calculating the Solution Vector

Our implementation:

(01) u < b/|b|| (08) Update intermediate values
(02) v — ATu/||ATu|| (09) Update solution vectors
(03) w — v (copy) (10) Test for convergence

(04) Calculate initial values (a, 3, etc)

(05) Iterate until converged

(06) u <« (Av-au)/|Av - aul| We love scalar quantities. Why store a vector of

; . multipliers when a single scalar will do?
(07) v (Au-Bv)IA"u - BVl

tvecmul: O(mn) matrix transpose and vector multiplication

Original CSR vecmul routine, for comparison. Transpose — vecmul = O(m?n?). Not good!
1. Loop over row_ptr array 1. Loop over row_ptr
2. Take dot product of row and input vector 2. Take columnwise dot product with input
vector

subroutine tvecmul(x, y)
real(DP), intent(in) :: x(:)
real(DP), intent(out) :: y(:)
real(DP) :: xi
dnteger 108G AEE1 D

subroutine vecmul(x, y)
real(DP), intent(in) :: x(:)
real(DP), intent(out) :: y(:)
real(DP) :: yo
integer :: i, j, U, 11, 12

12 = 0
y = 0.0_DP

12 =0

i =1, mrow
yo = 0.0_DP
11 =12 + 1

i =1, mrow

X IE= i ()

11 =12 + 1

12 = 12 + (row_ptr(i + 1) - row_ptr(i))
11 | {u

12 = 12 + (row_ptr(i + 1) - row_ptr(i))

TRl
j = col_ind(1)
yo = yo + val(l) » x(j)

1 =11, 12
j = col_ind(1)
y(3) = y(3) + val(1l) *» xi

y(i) - yo

end subroutine vecmul end subroutine tvecmul

*adapted from Paige and Saunders, 1982.

Testing Process

Parameters / Flags Procedure

1. Run each program 2 times. We want the OS

- Compilation: -03 to cache accessed files so we get “hot”

- MPI Config: slots=25 access during testing*.
- Running: 2. Memory Profiling
- OMP_NUM_THREADS =8 a. Compile programs without optimization.

b. Run with Massif.
- nprocs: 25 c. Extract graphs and reset environment.
- Valgrind Tools: d. Repeat 3 times.
3. Speed Test

- Massif

. a. Compile programs with optimization (-Ofast).
- Callgrind b. Run with Valgrind
- Default (Valgrind) c. Take user time statistics.

d. Repeat 3 times.
4. For fun, we could test this on both Slurm and
user space. For small datasets, we test on
user space.

*We can do this in practice by running a low-overhead utility to read the file before execution.

Memory Usage

From paper®: Our implementation™

900D DD DD
B EEEEEEEEEEEE
900D DD D
BB EEEEEEEEEEEEE)

aQ:
aQ:
@:
aQ:
@:
Y
a:
I
Q:
a:
@:
Q:
aQ:
@:
Q:
[H
@:
a@:

*Massif outputs.

What does this mean?

How to interpret this data: Massif takes From paper™:
snapshots at semi-regular intervals throughout

execution. “.” denote regular snapshots, “@”
detailed, “#” peak.

- One large allocation at beginning of
execution (peak usage).

- Many copies made—we only need one set
of data!

- Low on instructions, but high on memory.

- Detailed snapshots mid-solving—lots of
data moving.

*Massif outputs.

What does this mean?

How to interpret this data: we split operations Our implementation™
across four processes while testing. Multiply the
memory usage by 25 for more appropriate
figures.

- One (smaller!) allocation at the beginning.

- Detailed snapshots occur while loading,
stable computation.

- Fewer allocations == less overhead.

- Rely on the stack for smaller values (let
Fortran handle dynamically) and
repurpose our allocation instead of making
new ones.

*Massif outputs.

Some Benchmarks (nel = 1.3*10%, n = 10, slots = 25)

LSQR Routine

- User Time: 18m 45s

- Initializing Time: 0.6s

- Matrix Loading Time: ~8m

- Time to Convergence: ~9m

- Peak Memory Usage: 1.519 GB
- Successful Runs: 9/10, 90%

Notes: Segfaulted (somewhat randomly) during
development. Numerically unstable method;
overflows, division by 0, etc.

Parallel CGR

User Time: 13m 12s

Initializing Time: 0.03s

Matrix Loading Time: ~5m

Time to Convergence: ~7m

Peak Memory Usage: 17.84 * 25 = 446
MB

Successful Runs: 10/10, 100%

Notes: We trade off minimal operations for
memory and numerical stability. Remains
slightly faster.

Takeaways

On Memory Efficiency

Fortran utilizes pass-by-reference. Let’s
take advantage of that!

We only use our matrices / vectors once
per execution. We don’t need to make
copies! Modify in-place.

Paige and Saunders uses
single-precision tolerance, but we stored
double-precision vectors during
computation—unnecessary*!

We save around 1 single-precision
solution vector's worth of storage per
iteration—amounting to ~1 GB (~60%) in
test set.

On Parallelization

If we need to pass data frequently or in
large quantities, parallelization is
probably a bad idea.

We observed MPI latency at 3.42x
execution speed for large vectors (on the
order of 100,000 rows, tested with vecmul
and tvecmul).

In short: large single-threaded vecmul with
execution time of 4.52 seconds took
~15.45 second in parallel.

*Double-precision required while loading. We can shorten the variables during computation.

Takeaways

What We Achieved What We Didn’t Achieve

- Re-implemented Paige and Saunders’ - Find a partitioning algorithm that balances
Conjugate Gradient Routine. computation time and communication

- Added parallel segments and overhead (though this may exist!)
partitioning to code—we don'’t run by - Implement an external preconditioner
default on Bell, but the option exists. (outside scope of project, great idea for

- Reduced time complexity and memory future).
footprint of matrix loading. - Reduce matrix loading to

- Cleaned codebase, reduced sub-O(n?)—improved from O(n3) original
redundancies, and greatly reduced overall but still sub-optimal.

memory usage.

*Double-precision required while loading. We can shorten the variables during computation.

Project Summary, Revisited

- Project Goals:

- v/ Reduce memory usage from original
LSQR routine.

-/ Increase convergence speed.

-/ Parallelize components. We have cores,
we should use them!

- Personal Goals:

- v/ Learn more about research! (started
project as a first-semester freshman)
- v/ Complete the project goals.

We received a fair amount of negative results
(forced to change algorithms, block operations

instead of full partitions, etc), but we did achieve
each goal.

*image from Huang et al. Original partitioning algorithm.

Matrix A

|deas for Future Improvement

On Memory Efficiency

- Other than developing a fully novel
method, | do not see obvious ways of
increasing memory efficiency.

- Performing further elimination /
bandwidth reduction on the matrix leads
to a lower memory footprint during
computation but greater overall, may be
computationally expensive.

- Running an external preconditioner over
the data will lower net usage but not peak.

*this method is numerically unstable. not good!

On Parallelization / Efficiency

GPUs specialize in fast matrix and vector
multiplication and parallel computing.
Future implementations could rely on
CUDA or OpenGL rather than OpenMPI
for reduced latency and increased
computation speed.

We could precondition our routine to
speed up convergence as seenin a
biconjugate gradient method*. Without
prior knowledge of data this may be
computationally expensive.

References
A scalable parallel LSQR algorithm for solving large-scale linear system for
tomographic problems: a case study in seismic tomography. Huang et al. 2013.

LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares.
Paige and Saunders. 1982.

An Introduction to the Conjugate Gradient Method Without the Agonizing Pain.
Shewchuk. 1994.

Full-Wave Ambient Noise Tomography, modified from Shen and Gao. 2018.

