A Parallel Conjugate Gradient Routine

Noah Trupin and Xiaotao Yang

Contents

- Project Summary
- What is the Conjugate Gradient Routine?
- Krylov Vectors for Non-Square Matrices
- Comparisons to SPLSQR
- Naive Parallelization
- Partitioning for Multiple Tasks
- Calculating the Solution Vector
- tvecmul
- Testing Process
- Memory Usage
- Some Benchmarks
- Takeaways
- Project Summary, Revisited
- Ideas for Future Improvement
conjugate vector (red) vs. gradient descent (green) for $n=2$

Project Summary

- Implement a memory-efficient, parallel routine for solving large sparse systems in the form $A x=b$ (or $G m=d$).
- Project Goals:
- Reduce memory usage from original LSQR routine.
- Increase convergence speed.
- Parallelize components. We have cores, we should use them!
- Personal Goals:
- Learn more about research! (started project as a first-semester freshman)
- Complete the project goals.

Matrix A
*image from Huang et al. Original partitioning algorithm.

What is the Conjugate Gradient Routine?

- An iterative Krylov subspace method for solving sparse systems of linear equations of the form $A x=b$ (or $G m=d$).
- Works on square systems-we can fix that using a biconjugate adaptation (dealing with transpose matrices).
- Applicable to matrices too large for solving with direct methods.
- Finding a convergent x with respect to matrix A and vector b behaves similarly to gradient descent; we can use this to backtrack and treat rounding errors.

Krylov Vectors for Non-Square Matrices

- Column space of b under the first \mathbf{r} powers of A.
- Useful for approximating high-dimensional linear algebra problems.
- Composable on square matrices-ours is rectangular!
- We combine our matrix and its transpose to simulate a square matrix to generate a Krylov subspace for performing the conjugate gradient method.

Comparison to SPLSQR

SPLSQR

- Focused on minimizing computational cost via aggressive parallelization.
- Designed for use on non-square matrices.
- Involves factoring the matrix into orthogonal and upper triangular matrices.
- Not numerically stable for ill-conditioned systems. Ill-formed or unexpected inputs often cause segfaults.

Conjugate Gradient Routine

- Focused on minimizing communication overhead via small batch communication and a single-threaded iterative method with nested parallel components.
- Generalizable to non-square matrices using biconjugate methods / multiplication with transpose.
- More numerically stable through BiCGSTAB technique. III-formed or unexpected inputs will fail to converge without error (itcount $=30,000^{*}$)

[^0]
Naive Parallelization

- naive parallelization: parallelizing every loop construct without considering operation.
- loops with order-dependent operations should not be parallelized*.
- loops with order-independent operations should be parallelized.

```
apply damping
do i = 1, max_x
    coef_dp(1) = damping
    idx(1) = i
    call csm_insert_row(1, idx, coef_dp, 0.0_DP)
end do
```

```
a non-parallelizable loop
```

```
$omp parallel do private(tmp) shared(w) reduction(+:x,sig)
do i = 1, ncol
    tmp = w(i) / rho
    w(i) = v(i) - theta * tmp
    x(i) = x(i) + phi * tmp
    sig(i) = sig(i) + tmp ** 2
end do
!$omp end parallel do
```

a parallelizable loop

* achievable with blocking. As always, context determines application. We did not parallelize order-dependent loops in this project.

Partitioning for Multiple Tasks

- Goal: Find balance between communication overhead and computation time.
- Observations: in practice, the balance occurs when $\mathrm{n}=1$ (we do not partition the matrix) and instead perform batch multiplication on subsections of the matrix. When doing so we follow a similar structure along the band. More on this later in presentation.
- Also, partitions often appear ill-conditioned and CGR does not converge in reasonable time.

Matrix A
*image from Huang et al. Original partitioning algorithm.

Partitioning for Multiple Tasks

From paper*:
(05) Partition matrices: Ak, Ad, and Adt
(06) $\quad A k i \leftarrow A k$ (partitioning across columns)
(07) \quad Adi $\leftarrow \operatorname{Ad}$ (partitioning across rows)
(08) \quad Adti \leftarrow Adt (partitioning across columns)
where:

- $\quad n k$: rows in kernel submatrix.
- nd: rows in damping submatrix.
- A: our matrix (also referred to as G).
- $A k$: kernel submatrix. $A k \in \mathbf{R}^{n k \times m}$
- Ad: damping submatrix. $A d \in \mathbf{R}^{n d \times m}$
- Adt: transpose of Ad.
- Aki: piece of kernel submatrix on task i.
- Adi: piece of damping submatrix on task i.
- Adt: piece of transpose matrix on task i.

[^1]
Partitioning for Multiple Tasks

Our implementation*:
(05) Partition matrices: Ak, Ad, and Adt
(06) $\quad A k i \leftarrow A k$ (partitioning across columns)
(07) \quad Adi $\leftarrow A d$ (partitioning across rows)
(O8) Adti \quad Adt (partitioning across columns)

Instead: calculate partition transpose on-the-fly.
where:

- nk: rows in kernel submatrix.
- nd: rows in damping submatrix.
- A: our matrix (also referred to as G).
- $A k$: kernel submatrix. $A k \in \mathbf{R}^{n k \times m}$
- Ad: damping submatrix. $A d \in \mathbf{R}^{n d \times m}$

Adt: transpose of Ad.

- Aki: piece of kernel submatrix on task i.
- Adi: piece of damping submatrix on task i.

Adt: piece of transpose matrix on task i.

[^2]
Calculating the Solution Vector

- We declare a variable $t=r / a(x x)$ as metric of convergence. When t reaches specific tolerance level* we determine the CGR has converged.
- Utilize scalar quantities as determinants of proximity to convergence rather than checking vectors. Saves space, compute, and unneeded complexity.

Calculating the Solution Vector

From paper*:
(01) Iterative until converged
(02) Calculate: $y \leftarrow A * x+y$
(03) Kernel component:
(04) $\quad y k i \leftarrow A k i{ }^{*} x i$ (partials)
(05) $\quad y k \leftarrow \operatorname{sum}(y k i)$ (sum partials)
(06) Damping component:
(07) Communicate: build $x^{\prime} i$.
(08) $\quad y d i \leftarrow A d i{ }^{*} x^{\prime} i$
(09) Calculate: $x \leftarrow A^{T *} y+x$
(10) Kernel component:
(12) Damping component:
(14) $\quad x d i \leftarrow A d t i{ }^{*} y d ' i$
(15) Construct orthogonal transformation
(16) Test convergence
*He Huang et al.

Calculating the Solution Vector

From paper*:
(01) Iterative until converged
(02) Calculate: $y \leftarrow A * x+y$
(03) Kernel component:
(04) $\quad y k i \leftarrow A k i{ }^{*} x i$ (partials)
(05) $\quad y k \leftarrow \operatorname{sum}(y k i)$ (sum partials)
(06) Damping component:
(07) Communicate: build $x^{\prime} i$.
(08) $\quad y d i \leftarrow A d i{ }^{*} x^{\prime} i$
(09) Calculate: $x \leftarrow A^{I *} y+x$
(10) Kernel component:
(11) $x k i \leftarrow A k^{\underline{I}} \underline{i}^{*} y k$
(12) Damping component:
(13) Communicate: build yd'i.
(14) $\quad x d i \leftarrow A d t i{ }^{*} y d ' i$
(15) Construct orthogonal transformation
(16) Test convergence
*He Huang et al.

Calculating the Solution Vector

From paper*:
(01) Iterative until converged
(02) Calculate: $y \leftarrow A * x+y$
(04) $y k i \leftarrow A k i * x i$ (partials)
(05) $y k \leftarrow \operatorname{sum}(y k i)$ (sum partials)
(07) Communicate: build $x^{\prime} i$.
(08) $y d i \leftarrow A d i{ }^{*} x ' i$
(09) Calculate: $x \leftarrow A^{T *} y+x$
(11) $x k i \leftarrow A k^{\top} j^{*} y k$
(13) Communicate: build $y d^{\prime}$ 'i.
(14) $x d i \leftarrow$ Adti ${ }^{*} y d ' i$

2 rounds of communication and numerous small vecmuls per iteration, more overhead than large vecmul. Can we improve this?

[^3]
Calculating the Solution Vector

Our implementation:
(01) $u \leftarrow b /|b| \mid$
(02) $v \leftarrow A^{T} u \Lambda\left\|A^{T} u\right\|$
(03) $w \leftarrow v$ (copy)
(04) Calculate initial values (α, β, etc)
(05) Iterate until converged
(06) $\quad u \leftarrow(A v-\alpha u) \Lambda|A v-\alpha u| \mid$
(07) $\quad v \leftarrow\left(A^{\top} u-\beta v\right) \wedge\left|A^{T} u-\beta v\right| \mid$
(08) Update intermediate values
(09) Update solution vectors
(10) Test for convergence

Calculating the Solution Vector

Our implementation:
(01) $u \leftarrow b /|b| \mid$
(02) $v \leftarrow A^{I} \underline{u}\left\|\mid A^{I} \underline{u}\right\|$
(03) $w \leftarrow v$ (copy)
(04) Calculate initial values (α, β, etc)
(05) Iterate until converged
(06) $\quad u \leftarrow(A v-\alpha u) \Lambda|A v-\alpha u| \mid$
(07) $\quad v \leftarrow\left(A^{I} \underline{u-\beta v)} \backslash\left|A^{I} \underline{u} \underline{u}-\beta v\right| \mid\right.$
(08) Update intermediate values
(09) Update solution vectors
(10) Test for convergence

Only 2 vecmuls per iteration. No need to store transpose, normalize values to prevent overflow (problem for large systems).

Calculating the Solution Vector

Our implementation:
(01) $u \leftarrow b /|b| \mid$
(02) $v \leftarrow A^{T} u \Lambda\left\|A^{T} u\right\|$
(03) $w \leftarrow v$ (copy)
(04) Calculate initial values (α, β, etc)
(05) Iterate until converged
(06) $\quad u \leftarrow(A v-\alpha u) \Lambda|A v-\alpha u| \mid$
(07) $\quad v \leftarrow\left(A^{T} u-\beta v\right) \wedge\left|A^{T} u-\beta v\right| \mid$
(08) Update intermediate values
(09) Update solution vectors
(10) Test for convergence

We love scalar quantities. Why store a vector of multipliers when a single scalar will do?

tvecmul: $\mathrm{O}(\mathrm{mn})$ matrix transpose and vector multiplication

Original CSR vecmul routine, for comparison.

1. Loop over row_ptr array
2. Take dot product of row and input vector

Transpose \rightarrow vecmul $=O\left(m^{2} n^{2}\right)$. Not good!

1. Loop over row_ptr
2. Take columnwise dot product with input vector
```
subroutine tvecmul(x, y)
    real(DP), intent(in) :: x(:)
    real(DP), intent(out)
    integer :: i, j, l, l1, l2
    l2 =
    y = 0.0_DP
    do i = 1, mrow
        xi = x(i)
        l1 = l2 + 1 
        l2 = l2 + (row_ptr(i + 1) - row_ptr(i)
        do l = l1, l2
            j = col_ind(l)
            y(j) = y(j) + val(l) * xi
        !$omp end parallel do
    end c
    subroutine tvecmul
```

*adapted from Paige and Saunders, 1982.

Testing Process

Parameters / Flags

- Compilation: -03
- MPI Config: slots=25
- Running:
- OMP_NUM_THREADS = 8
- nprocs: 25
- Valgrind Tools:
- Massif
- Callgrind
- Default (Valgrind)

Procedure

1. Run each program 2 times. We want the OS to cache accessed files so we get "hot" access during testing*.
2. Memory Profiling
a. Compile programs without optimization.
b. Run with Massif.
c. Extract graphs and reset environment.
d. Repeat 3 times.
3. Speed Test
a. Compile programs with optimization (-Ofast).
b. Run with Valgrind
c. Take user time statistics.
d. Repeat 3 times.
4. For fun, we could test this on both Slurm and user space. For small datasets, we test on user space.
*We can do this in practice by running a low-overhead utility to read the file before execution.

Memory Usage

From paper*:

GB						
\|\#: :0 : : : : : :@ : :@ : : :@ : :@ :						
\|\#:: : : : : : : : : : : : :: :: :: : :						
\|\#:: : : : : : : : : : : : : : : : : : : :						
\|\#:: : : : : : : : : : : : : : : : : : :						
\|\#::: :: :: :: :: :: :: :: :: :: : :						
\|\#:: : : : : : : : : : : : : : : : : : : :						
\|\#: \quad : : :0: : : : : :0: :0: : :0: :0:						
\|\#: : : : : : : : : : : : : : : : : : : :						
0 +--->Gi0						

Our implementation*:

[^4]
What does this mean?

How to interpret this data: Massif takes snapshots at semi-regular intervals throughout execution. ":" denote regular snapshots, "@" detailed, "\#" peak.

- One large allocation at beginning of execution (peak usage).
- Many copies made-we only need one set of data!
- Low on instructions, but high on memory.
- Detailed snapshots mid-solving-lots of data moving.

From paper*:

[^5]
What does this mean?

How to interpret this data: we split operations across four processes while testing. Multiply the memory usage by 25 for more appropriate figures.

- One (smaller!) allocation at the beginning.
- Detailed snapshots occur while loading, stable computation.
- Fewer allocations == less overhead.
- Rely on the stack for smaller values (let Fortran handle dynamically) and repurpose our allocation instead of making

Our implementation*:
 new ones.

[^6]
Some Benchmarks $\left(\mathrm{nel} \approx 1.3^{*} 10^{8}, \mathrm{n}=10\right.$, slots $\left.=25\right)$

LSQR Routine

- User Time: 18m 45s
- Initializing Time: 0.6s
- Matrix Loading Time: ~8m
- Time to Convergence: $\sim 9 \mathrm{~m}$
- Peak Memory Usage: 1.519 GB
- Successful Runs: 9/10, 90\%

Notes: Segfaulted (somewhat randomly) during development. Numerically unstable method; overflows, division by 0 , etc.

Parallel CGR

- User Time: 13m 12s
- Initializing Time: 0.03s
- Matrix Loading Time: ~5m
- Time to Convergence: $\sim 7 \mathrm{~m}$
- Peak Memory Usage: 17.84 * 25 = 446 MB
- Successful Runs: 10/10, 100\%

Notes: We trade off minimal operations for memory and numerical stability. Remains slightly faster.

Takeaways

On Memory Efficiency

- Fortran utilizes pass-by-reference. Let's take advantage of that!
- We only use our matrices / vectors once per execution. We don't need to make copies! Modify in-place.
- Paige and Saunders uses single-precision tolerance, but we stored double-precision vectors during computation-unnecessary*!
- We save around 1 single-precision solution vector's worth of storage per iteration-amounting to ~ 1 GB ($\sim 60 \%$) in test set.

On Parallelization

- If we need to pass data frequently or in large quantities, parallelization is probably a bad idea.
- We observed MPI latency at $3.42 x$ execution speed for large vectors (on the order of 100,000 rows, tested with vecmul and tvecmul).
- In short: large single-threaded vecmul with execution time of 4.52 seconds took ~ 15.45 second in parallel.

[^7]
Takeaways

What We Achieved

- Re-implemented Paige and Saunders' Conjugate Gradient Routine.
- Added parallel segments and partitioning to code-we don't run by default on Bell, but the option exists.
- Reduced time complexity and memory footprint of matrix loading.
- Cleaned codebase, reduced redundancies, and greatly reduced overall memory usage.

What We Didn’t Achieve

- Find a partitioning algorithm that balances computation time and communication overhead (though this may exist!)
- Implement an external preconditioner (outside scope of project, great idea for future).
- Reduce matrix loading to sub- $\mathrm{O}\left(\mathrm{n}^{2}\right)$-improved from $\mathrm{O}\left(\mathrm{n}^{3}\right)$ original but still sub-optimal.

[^8]
Project Summary, Revisited

- Project Goals:
- $\quad \checkmark$ Reduce memory usage from original LSQR routine.
- $\quad \checkmark$ Increase convergence speed.
- $\quad \checkmark$ Parallelize components. We have cores, we should use them!
- Personal Goals:
- \quad Learn more about research! (started project as a first-semester freshman)
- $\quad \checkmark$ Complete the project goals.

We received a fair amount of negative results (forced to change algorithms, block operations instead of full partitions, etc), but we did achieve each goal.

Matrix A
*image from Huang et al. Original partitioning algorithm.

Ideas for Future Improvement

On Memory Efficiency

- Other than developing a fully novel method, I do not see obvious ways of increasing memory efficiency.
- Performing further elimination / bandwidth reduction on the matrix leads to a lower memory footprint during computation but greater overall, may be computationally expensive.
- Running an external preconditioner over the data will lower net usage but not peak.

On Parallelization / Efficiency

- GPUs specialize in fast matrix and vector multiplication and parallel computing. Future implementations could rely on CUDA or OpenGL rather than OpenMPI for reduced latency and increased computation speed.
- We could precondition our routine to speed up convergence as seen in a biconjugate gradient method*. Without prior knowledge of data this may be computationally expensive.

[^9]
References

A scalable parallel LSQR algorithm for solving large-scale linear system for tomographic problems: a case study in seismic tomography. Huang et al. 2013.

LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares. Paige and Saunders. 1982.

An Introduction to the Conjugate Gradient Method Without the Agonizing Pain. Shewchuk. 1994.

Full-Wave Ambient Noise Tomography, modified from Shen and Gao. 2018.

[^0]: *taken from Shen and Gao.

[^1]: *He Huang et al.

[^2]: *He Huang et al.

[^3]: *He Huang et al.

[^4]: *Massif outputs.

[^5]: *Massif outputs.

[^6]: *Massif outputs.

[^7]: *Double-precision required while loading. We can shorten the variables during computation.

[^8]: *Double-precision required while loading. We can shorten the variables during computation

[^9]: *this method is numerically unstable. not good!

