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conjugate vector (red) vs. gradient descent (green) for n = 2. 
from Wikipedia 



Project Summary

- Implement a memory-efficient, parallel 
routine for solving large sparse systems 
in the form Ax = b (or Gm = d).

- Project Goals:
- Reduce memory usage from original LSQR 

routine.
- Increase convergence speed.
- Parallelize components. We have cores, 

we should use them!
- Personal Goals: 

- Learn more about research! (started 
project as a first-semester freshman)

- Complete the project goals.

*image from Huang et al. Original partitioning algorithm.



What is the Conjugate Gradient Routine?

- An iterative Krylov subspace method for 
solving sparse systems of linear equations 
of the form Ax = b (or Gm = d). 

- Works on square systems–we can fix that 
using a biconjugate adaptation (dealing 
with transpose matrices). 

- Applicable to matrices too large for solving 
with direct methods.

- Finding a convergent x with respect to 
matrix A and vector b behaves similarly to 
gradient descent; we can use this to 
backtrack and treat rounding errors. 

*image from Wikipedia



Krylov Vectors for Non-Square Matrices

- Column space of b under the first r 
powers of A.

- Useful for approximating high-dimensional 
linear algebra problems.

- Composable on square matrices–ours is 
rectangular!

- We combine our matrix and its transpose 
to simulate a square matrix to generate a 
Krylov subspace for performing the 
conjugate gradient method.



Comparison to SPLSQR

- Focused on minimizing computational 
cost via aggressive parallelization.

- Designed for use on non-square matrices.
- Involves factoring the matrix into 

orthogonal and upper triangular 
matrices.

- Not numerically stable for ill-conditioned 
systems. Ill-formed or unexpected inputs 
often cause segfaults. 

- Focused on minimizing communication 
overhead via small batch communication 
and a single-threaded iterative method 
with nested parallel components. 

- Generalizable to non-square matrices 
using biconjugate methods / multiplication 
with transpose.

- More numerically stable through 
BiCGSTAB technique. Ill-formed or 
unexpected inputs will fail to converge 
without error (itcount = 30,000*)

SPLSQR Conjugate Gradient Routine

*taken from Shen and Gao.



Naive Parallelization

- naive parallelization: parallelizing every 
loop construct without considering 
operation.

- loops with order-dependent operations 
should not be parallelized*.

- loops with order-independent operations 
should be parallelized.

a non-parallelizable loop

* achievable with blocking. As always, context determines application. We did not parallelize order-dependent loops in this 
project.

a non-parallelizable loop

a parallelizable loop



Partitioning for Multiple Tasks

- Goal: Find balance between 
communication overhead and computation 
time.

- Observations: in practice, the balance 
occurs when n = 1 (we do not partition the 
matrix) and instead perform batch 
multiplication on subsections of the matrix. 
When doing so we follow a similar 
structure along the band. More on this 
later in presentation. 

- Also, partitions often appear ill-conditioned 
and CGR does not converge in reasonable 
time.

*image from Huang et al. Original partitioning algorithm.



Partitioning for Multiple Tasks

From paper*:

(05) Partition matrices: Ak, Ad, and Adt

(06)     Aki ← Ak (partitioning across columns)

(07)     Adi ← Ad (partitioning across rows)

(08)     Adti ← Adt (partitioning across columns)

where:

- nk: rows in kernel submatrix.
- nd: rows in damping submatrix.
- A: our matrix (also referred to as G).
- Ak: kernel submatrix. Ak ∈ 𝐑nk x m

- Ad: damping submatrix. Ad ∈ 𝐑nd x m

- Adt: transpose of Ad.
- Aki: piece of kernel submatrix on task i.
- Adi: piece of damping submatrix on task i.
- Adt: piece of transpose matrix on task i.

*He Huang et al.



Partitioning for Multiple Tasks

Our implementation*:

(05) Partition matrices: Ak, Ad, and Adt

(06)     Aki ← Ak (partitioning across columns)

(07)     Adi ← Ad (partitioning across rows)

(08)     Adti ← Adt (partitioning across columns)

Instead: calculate partition transpose on-the-fly. 

where:

- nk: rows in kernel submatrix.
- nd: rows in damping submatrix.
- A: our matrix (also referred to as G).
- Ak: kernel submatrix. Ak ∈ 𝐑nk x m

- Ad: damping submatrix. Ad ∈ 𝐑nd x m

- Adt: transpose of Ad.
- Aki: piece of kernel submatrix on task i.
- Adi: piece of damping submatrix on task i.
- Adt: piece of transpose matrix on task i.

*He Huang et al.



Calculating the Solution Vector

- We declare a variable t = r / a(xx) as 
metric of convergence. When t reaches 
specific tolerance level* we determine the 
CGR has converged.

- Utilize scalar quantities as determinants of 
proximity to convergence rather than 
checking vectors. Saves space, compute, 
and unneeded complexity. 

*10^-7, from Paige and Saunders



Calculating the Solution Vector

From paper*:

(01) Iterative until converged

(02)     Calculate: y ← A * x + y 

(03)         Kernel component:

(04)             yki ← Aki * xi (partials)

(05)             yk ← sum(yki) (sum partials)

(06)         Damping component:

(07)             Communicate: build x’i.

(08)             ydi ← Adi * x’i

(09)     Calculate: x ← AT * y + x

(10)         Kernel component:

(11)             xki ← AkTi * yk

(12)         Damping component:

(13)             Communicate: build yd’i.

(14)         xdi ← Adti * yd’i

(15) Construct orthogonal transformation

(16) Test convergence 

*He Huang et al.
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Calculating the Solution Vector

From paper*:

(01) Iterative until converged

(02) Calculate: y ← A * x + y 

(04) yki ← Aki * xi (partials)

(05) yk ← sum(yki) (sum partials)

(07)  Communicate: build x’i.

(08)  ydi ← Adi * x’i

(09)  Calculate: x ← AT * y + x

(11) xki ← AkTi * yk

(13) Communicate: build yd’i.

(14) xdi ← Adti * yd’i

2 rounds of communication and numerous small 
vecmuls per iteration, more overhead than large 
vecmul. Can we improve this?

*He Huang et al.



Calculating the Solution Vector

Our implementation:

(01) u ← b/||b|| 

(02) v ← ATu/||ATu||

(03) w ← v (copy)

(04) Calculate initial values (α, β, etc)

(05) Iterate until converged

(06)     u ← (Av - αu)/||Av - αu||

(07)     v ← (ATu - βv)/||ATu - βv||  

(08) Update intermediate values

(09) Update solution vectors

(10) Test for convergence



Calculating the Solution Vector

Our implementation:

(01) u ← b/||b|| 

(02) v ← ATu/||ATu||

(03) w ← v (copy)

(04) Calculate initial values (α, β, etc)

(05) Iterate until converged
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(08) Update intermediate values

(09) Update solution vectors

(10) Test for convergence

Only 2 vecmuls per iteration. No need to store 
transpose, normalize values to prevent overflow 
(problem for large systems).



Calculating the Solution Vector

Our implementation:

(01) u ← b/||b|| 

(02) v ← ATu/||ATu||

(03) w ← v (copy)

(04) Calculate initial values (α, β, etc)

(05) Iterate until converged

(06)     u ← (Av - αu)/||Av - αu||

(07)     v ← (ATu - βv)/||ATu - βv||  

(08) Update intermediate values

(09) Update solution vectors

(10) Test for convergence

We love scalar quantities. Why store a vector of 
multipliers when a single scalar will do? 



 tvecmul: O(mn) matrix transpose and vector multiplication

Original CSR vecmul routine, for comparison.

1. Loop over row_ptr array
2. Take dot product of row and input vector

Transpose → vecmul = O(m2n2). Not good!

1. Loop over row_ptr
2. Take columnwise dot product with input 

vector

*adapted from Paige and Saunders, 1982.



Testing Process

Parameters / Flags

- Compilation: -03
- MPI Config: slots=25
- Running:

- OMP_NUM_THREADS = 8
- nprocs: 25

- Valgrind Tools:
- Massif
- Callgrind
- Default (Valgrind)

Procedure

1. Run each program 2 times. We want the OS 
to cache accessed files so we get “hot” 
access during testing*.

2. Memory Profiling
a. Compile programs without optimization. 
b. Run with Massif.
c. Extract graphs and reset environment.
d. Repeat 3 times.

3. Speed Test
a. Compile programs with optimization (-Ofast).
b. Run with Valgrind
c. Take user time statistics.
d. Repeat 3 times.

4. For fun, we could test this on both Slurm and 
user space. For small datasets, we test on 
user space.

*We can do this in practice by running a low-overhead utility to read the file before execution.



Memory Usage

From paper*:

 

Our implementation*:

*Massif outputs.



What does this mean?

How to interpret this data: Massif takes 
snapshots at semi-regular intervals throughout 
execution. “:” denote regular snapshots, “@” 
detailed, “#” peak.

- One large allocation at beginning of 
execution (peak usage).

- Many copies made–we only need one set 
of data! 

- Low on instructions, but high on memory.
- Detailed snapshots mid-solving–lots of 

data moving.

 

From paper*:

*Massif outputs.



What does this mean?

How to interpret this data: we split operations 
across four processes while testing. Multiply the 
memory usage by 25 for more appropriate 
figures. 

- One (smaller!) allocation at the beginning.
- Detailed snapshots occur while loading, 

stable computation.
- Fewer allocations == less overhead.
- Rely on the stack for smaller values (let 

Fortran handle dynamically) and 
repurpose our allocation instead of making 
new ones.

Our implementation*:

*Massif outputs.



Some Benchmarks (nel ≈ 1.3*108, n = 10, slots = 25)

- User Time: 18m 45s
- Initializing Time: 0.6s
- Matrix Loading Time: ~8m
- Time to Convergence: ~9m
- Peak Memory Usage: 1.519 GB
- Successful Runs: 9/10, 90%

Notes: Segfaulted (somewhat randomly) during 
development. Numerically unstable method; 
overflows, division by 0, etc.

- User Time: 13m 12s
- Initializing Time: 0.03s
- Matrix Loading Time: ~5m
- Time to Convergence: ~7m
- Peak Memory Usage: 17.84 * 25 = 446 

MB
- Successful Runs: 10/10, 100%

Notes: We trade off minimal operations for 
memory and numerical stability. Remains 
slightly faster.

LSQR Routine Parallel CGR



Takeaways

- Fortran utilizes pass-by-reference. Let’s 
take advantage of that!

- We only use our matrices / vectors once 
per execution. We don’t need to make 
copies! Modify in-place. 

- Paige and Saunders uses 
single-precision tolerance, but we stored 
double-precision vectors during 
computation–unnecessary*! 

- We save around 1 single-precision 
solution vector's worth of storage per 
iteration–amounting to ~1 GB (~60%) in 
test set.

- If we need to pass data frequently or in 
large quantities, parallelization is 
probably a bad idea.

- We observed MPI latency at 3.42x 
execution speed for large vectors (on the 
order of 100,000 rows, tested with vecmul 
and tvecmul). 

- In short: large single-threaded vecmul with 
execution time of 4.52 seconds took 
~15.45 second in parallel.

On Memory Efficiency On Parallelization

*Double-precision required while loading. We can shorten the variables during computation.



Takeaways

- Re-implemented Paige and Saunders’ 
Conjugate Gradient Routine.

- Added parallel segments and 
partitioning to code–we don’t run by 
default on Bell, but the option exists.

- Reduced time complexity and memory 
footprint of matrix loading.

- Cleaned codebase, reduced 
redundancies, and greatly reduced overall 
memory usage.

- Find a partitioning algorithm that balances 
computation time and communication 
overhead (though this may exist!)

- Implement an external preconditioner 
(outside scope of project, great idea for 
future).

- Reduce matrix loading to 
sub-O(n2)–improved from O(n3) original 
but still sub-optimal.

What We Achieved What We Didn’t Achieve

*Double-precision required while loading. We can shorten the variables during computation.



Project Summary, Revisited

- Project Goals:
- ✓ Reduce memory usage from original 

LSQR routine.
- ✓ Increase convergence speed.
- ✓ Parallelize components. We have cores, 

we should use them!
- Personal Goals: 

- ✓ Learn more about research! (started 
project as a first-semester freshman)

- ✓ Complete the project goals.

We received a fair amount of negative results 
(forced to change algorithms, block operations 
instead of full partitions, etc), but we did achieve 
each goal. 

*image from Huang et al. Original partitioning algorithm.



Ideas for Future Improvement

- Other than developing a fully novel 
method, I do not see obvious ways of 
increasing memory efficiency.

- Performing further elimination / 
bandwidth reduction on the matrix leads 
to a lower memory footprint during 
computation but greater overall, may be 
computationally expensive.

- Running an external preconditioner over 
the data will lower net usage but not peak.

- GPUs specialize in fast matrix and vector 
multiplication and parallel computing. 
Future implementations could rely on 
CUDA or OpenGL rather than OpenMPI 
for reduced latency and increased 
computation speed.

- We could precondition our routine to 
speed up convergence as seen in a 
biconjugate gradient method*. Without 
prior knowledge of data this may be 
computationally expensive.

On Memory Efficiency On Parallelization / Efficiency

*this method is numerically unstable. not good! 
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