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ABSTRACT
We examine several host-based anomaly detection systems
and study their security against evasion attacks. First, we
introduce the notion of a mimicry attack, which allows a so-
phisticated attacker to cloak their intrusion to avoid detec-
tion by the IDS. Then, we develop a theoretical framework
for evaluating the security of an IDS against mimicry at-
tacks. We show how to break the security of one published
IDS with these methods, and we experimentally confirm the
power of mimicry attacks by giving a worked example of an
attack on a concrete IDS implementation. We conclude with
a call for further research on intrusion detection from both
attacker’s and defender’s viewpoints.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection

Keywords
Host-based intrusion detection, anomaly detection, evasion
attacks

General Terms
Security

1. INTRODUCTION
The goal of an intrusion detection system (IDS) is like

that of a watchful burglar alarm: if an attacker manages to
penetrate somehow our security perimeter, the IDS should
set off alarms so that a system administrator may take ap-
propriate action. Of course, attackers will not necessarily
cooperate with us in this. Just as cat burglars use stealth
to escape without being noticed, so too we can expect that
computer hackers may take steps to hide their presence and
try to evade detection. Hence if an IDS is to be useful, it
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would be a good idea to make it difficult for attackers to
cause harm without being detected. In this paper, we study
the ability of IDS’s to reliably detect stealthy attackers who
are trying to avoid notice.

The fundamental challenge is that attackers adapt in re-
sponse to the defensive measures we deploy. It is not enough
to design a system that can withstand those attacks that are
common at the time the system is deployed. Rather, secu-
rity is like a game of chess: one must anticipate all moves the
attacker might make and ensure that the system will remain
secure against all the attacker’s possible responses. Conse-
quently, an IDS that is susceptible to evasion attacks (where
the attacker can cloak their attack to evade detection) is of
uncertain utility over the long term: we can expect that if
such an IDS sees widespread deployment, then attackers will
change their behavior to routinely evade it. Since in practice
many attacks arise from automated scripts, script writers
may someday incorporate techniques designed to evade the
popular IDS’s in their scripts. In this sense, the very suc-
cess of an approach for intrusion detection may lead to its
own downfall, if the approach is not secure against evasion
attacks.

Broadly speaking, there are two kinds of intrusion de-
tection systems: network intrusion detection systems, and
host-based intrusion detection systems. Several researchers
have previously identified a number of evasion attacks on
network intrusion detection systems [19, 18, 7, 1]. Moti-
vated by those results, in this paper we turn our attention
to host-based intrusion detection.

Though there has been a good deal of research on the se-
curity of network IDS’s against evasion attacks, the security
of host-based intrusion detection systems against evasion at-
tacks seems not to have received much attention in the se-
curity literature. One can find many papers proposing new
techniques for intrusion detection, and authors often try to
measure their detection power by testing whether they can
detect currently-popular attacks. However, the notion of se-
curity against adaptive adversarial attacks is much harder
to measure, and apart from some recent work [23, 24], this
subject does not seem to have received a great deal of cov-
erage in the literature. To remedy this shortcoming, in this
paper we undertake a systematic study of the issue.

Host-based intrusion detection systems can be further di-
vided into two categories: signature-based schemes (i.e.,
misuse detection) and anomaly detection. Signature-based
schemes are typically trivial to bypass simply by varying
the attack slightly, much in the same way that polymor-
phic viruses evade virus checkers. We show in Section 4.2
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how to automatically create many equivalent variants of a
given attack, and this could be used by an attacker to avoid
matching the IDS’s signature of an attack. This is an un-
avoidable weakness of misuse detection. Evasion attacks on
signature-based schemes are child’s play, and so we do not
consider them further in this paper.

Anomaly detection systems are more interesting from the
point of view of evasion attacks, and in this paper we focus
specifically on anomaly detection systems. We show in Sec-
tion 3 several general evasion methods, including the notion
of a mimicry attack and the idea of introducing “semantic
no-ops” in the middle of the attack to throw the IDS off.
Next, in Section 4, we introduce a principled framework for
finding mimicry attacks, building on ideas from language
and automata theory. We argue in Section 4.2 that nearly
every system call can be used as a “no-op,” giving the at-
tacker great freedom in constructing an attack that will not
trigger any intrusion alarms. Sections 5 and 6 describe our
empirical experience in using mimicry attacks to escape de-
tection: we convert an off-the-shelf exploit script into one
that works without being detected by the pH IDS. Finally,
in Sections 8 and 9 we conclude with a few parting thoughts
on countermeasures and implications.

For expository purposes, this paper is written from the
point of view of an attacker. Nonetheless, our goal is not
to empower computer criminals, but rather to explore the
limits of current intrusion detection technology and to en-
able development of more robust intrusion detection sys-
tems. The cryptographic community has benefitted tremen-
dously from a combination of research on both attacks and
defenses—for instance, it is now accepted wisdom that one
must first become expert in codebreaking if one wants to
be successful at codemaking, and many cryptosystems are
validated according to their ability to stand up to concerted
adversarial analysis—yet the intrusion detection community
has not to date had the benefit of this style of adversarial
scholarship. We hope that our work will help to jump-start
such a dialogue in the intrusion detection research literature.

2. A TYPICAL HOST-BASED IDS
There have been many proposals for how to do host-based

anomaly detection, but a paradigmatic (and seminal) exam-
ple is the general approach of Forrest, et al. [3, 2, 8, 26,
21]. We will briefly review their scheme. They monitor the
behavior of applications on the host by observing the inter-
action of those applications with the underlying operating
system. In practice, security-relevant interactions typically
take the form of system calls, and so their scheme works
by examining the trace of system calls performed by each
application.

Their scheme is motivated by using the human immune
system as a biological analogy. If the system call traces of
normal applications are self-similar, then we can attempt to
build an IDS that learns the normal behavior of applications
and recognizes possible attacks by looking for abnormalities.
In the learning phase of this sort of scheme, the IDS gath-
ers system call traces from times when the system is not
under attack, extracts all subtraces containing six consecu-
tive system calls, and creates a database of these observed
subtraces1. A subtrace is deemed anomalous if it does not

1In practice, pH uses lookahead pairs to reduce the size of
the database. This only increases the set of system call

appear in this database. Then, in the monitoring phase,
the abnormality of a new system call trace is measured by
counting how many anomalous subtraces it contains.

The authors’ experience is that attacks often appear as
radically abnormal traces. For instance, imagine a mail
client that is under attack by a script that exploits a buffer
overrun, adds a backdoor to the password file, and spawns a
new shell listening on port 80. In this case, the system call
trace will probably contain a segment looking something like
this:

open(), write(), close(), socket(), bind(), listen(),
accept(), read(), fork().

Since it seems unlikely that the mail client would normally
open a file, bind to a network socket, and fork a child in im-
mediate succession, the above sequence would likely contain
several anomalous subtraces, and thus this attack would be
easily detected.

We selected Somayaji and Forrest’s pH intrusion detec-
tion system [21] for detailed analysis, mainly because it was
the only system where full source code could be obtained
for analysis. Many other proposals for host-based anomaly
detection may be found in the literature [3, 2, 8, 26, 21, 5,
14, 15, 4, 26, 12, 13, 17, 27]. However, pH is fairly typical,
in the sense that many host-based IDS’s rely on recognizing
attacks based on the traces they produce, be it traces of sys-
tem calls, BSM audit events, or Unix commands. We will
use pH as a motivating example throughout the paper, but
we expect that our techniques will apply more generally to
host-based intrusion detection systems based on detecting
anomalies in sequences of events. For instance, it should be
possible to use our approach to analyze systems based on
system call sequences [3, 2, 8, 26, 5, 27], data mining [14,
15], neural networks [4], finite automata [17], hidden Markov
models [26], and pattern matching in behavioral sequences
[12, 13].

3. BUILDING BLOCKS FOR EVASION

Background. First, let us start with a few assumptions to
simplify the analysis to follow. It seems natural to assume
that the attacker knows how the IDS works. This seems
unavoidable: If the IDS becomes popular and is deployed at
many sites, it will be extremely difficult to prevent the source
code to the IDS from leaking. As usual, security through
obscurity is rarely a very reliable defense, and it seems nat-
ural to assume that the IDS algorithm will be available for
inspection and study by attackers.

Similarly, if the IDS relies on a database of normal behav-
ior, typically it will be straightforward for the attacker to
predict some approximation to this database. The behav-
ior of most system software depends primarily on the op-
erating system version and configuration details, and when
these variables are held constant, the normal databases pro-
duced on different machines should be quite similar. Hence,
an attacker could readily obtain a useful approximation to
the database on the target host by examining the normal
databases found on several other hosts of the same type, re-
taining only program behaviors common to all those other
databases, and using the result as our prediction of the nor-
mal database on the target host. Since in our attacks the

traces allowed by pH.
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attacker needs only an under-approximation to the normal
database in use, this should suffice. Hence, it seems rea-
sonable to assume that the database of normal behaviors is
mostly (or entirely) known.

Moreover, we also assume that the attacker can silently
take control of the application without being detected. This
assumption is not always satisfied, but for many common
attack vectors, the actual penetration leaves no trace in the
system call trace. For instance, exploiting a buffer over-
run vulnerability involves only a change in the control flow
of the program, but does not itself cause any system calls
to be invoked, and thus no syscall-based IDS can detect
the buffer overrun itself. In general, attacks can be divided
into a penetration phase (when the attacker takes control of
the application and injects remote code) and a exploitation
phase (when the attacker exploits his control of the appli-
cation to bring harm to the rest of the system by executing
the recently-injected foreign code), and most anomaly de-
tection systems are based on detecting the harmful effects
of the exploitation, not on detecting the penetration itself.
Consequently, it seems reasonable to believe that many ap-
plications may contain vulnerabilities that allow attackers
to secretly gain control of the application.

With that background, the remainder of this section de-
scribes six simple ideas for avoiding detection, in order of
increasing sophistication and power. We presume that the
attacker has a malicious sequence of actions that will cause
harm and that he wants to have executed; his goal is to
execute this sequence without being detected.

Slip under the radar. Our first evasion technique is based
on trying to avoid causing any change whatsoever in the ob-
servable behavior of the application. A simple observation
is that system call-based IDS’s can only detect attacks by
their signature in the system call trace of the application.
If it is possible to cause harm to the system without issu-
ing any system calls, then the IDS has no hope of detecting
such an attack. For instance, on some old versions of So-
laris it was possible to become root simply by triggering the
divide-by-zero trap handler, and this does not involve any
system calls. However, such OS vulnerabilities appear to
be exceptionally rare. As a more general instance of this
attack class, an attacker can usually cause the application
to compute incorrect results. For instance, a compromised
web browser might invisibly elide all headlines mentioning
the Democratic party whenever the user visits any news site,
or a compromised mailer might silently change the word “is”
to “isn’t” in every third email from the company’s CEO.

There seems to be little that an IDS can do about this
class of attacks. Fortunately, the harm that an attacker can
do to the rest of the system without executing any system
calls appears to be limited.

Be patient. A second technique for evading detection is
simply to be patient: wait passively for a time when the
malicious sequence will be accepted by the IDS as normal
behavior, and then pause the application and insert the ma-
licious sequence. Of course, the attacker can readily recog-
nize when the sequence will be allowed simply by simulating
the behavior of the IDS. Simulating the IDS should be easy,
since by our discussion above there are no secrets in the IDS
algorithm.

Moreover, it is straightforward for the attacker to retain

control while allowing the application to execute its usual se-
quence of system calls. For instance, the attacker who takes
control of an application could embed a Trojan horse by re-
placing all the library functions in the application’s address
space by modified code. The replacement implementation
might behave just like the pre-existing library code, except
that before returning to its caller each function could check
whether the time is right to begin executing the malicious
sequence. After this modification is completed, the attacker
could return the flow of program control to the application,
confident in the knowledge that he will retain the power to
regain control at any time. There are many ways to accom-
plish this sort of parasitic infection, and there seems to be
no defense against such an invasion.

There is one substantial constraint on the attacker, though.
This attack assumes that there will come a time when the
malicious sequence will be accepted; if not, the attacker
gains nothing. Thus, the power of this attack is limited
by the precision of the database of normal behavior.

Another limitation on the attacker is that, after the mali-
cious sequence has been executed, resuming execution of the
application may well lead to an abnormal system call trace.
In such a case, only two choices immediately present them-
selves: we could allow the application to continue executing
(thereby allowing the IDS to detect the attack, albeit after
the harm has already been done), or we could freeze the ap-
plication permanently (which is likely to be very noticeable
and thus might attract attention). A slightly better strategy
may be to cause the application to crash in some way that
makes the crash appear to have come from an innocuous
program bug rather than from a security violation. Since
in practice many programs are rather buggy, system admin-
istrators are used to seeing coredumps or the Blue Screen
of Death from time to time, and they may well ignore the
crash. However, this strategy is not without risk for the
attacker.

In short, a patient attacker is probably somewhat more
dangerous than a naive, impatient attacker, but the attacker
still has to get lucky to cause any harm, so in some scenarios
the risk might be acceptable to defenders.

Be patient, but make your own luck. One way the at-
tacker can improve upon passive patience is by loading the
dice. There are typically many possible paths of execution
through an application, each of which may lead to a slightly
different system call trace, and this suggests an attack strat-
egy: the attacker can look for the most favorable path of ex-
ecution and nudge the application into following that path.

As an optimization, rather than embedding a Trojan horse
and then allowing the application to execute normally, the
attacker can discard the application entirely and simulate
its presence. For example, the attacker can identify the
most favorable path of execution, then synthetically con-
struct the sequence of system calls that would be executed
by this path and issue them directly, inserting his malicious
sequence at the appropriate point. The analysis effort can
all be pre-computed, and thus a stealthy attack might sim-
ply contain a sequence of hard-coded system calls that sim-
ulate the presence of the application for a while and then
eventually execute the malicious sequence.

In fact, we can see there is no reason for the attacker to
restrict himself to the feasible execution paths of the appli-
cation. The attacker can even consider system call traces
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that could not possibly be output by any execution of the
application, so long as those traces will be accepted as “nor-
mal” by the IDS. In other words, the attacker can examine
the set of system call traces that won’t trigger any alarms
and look for one such trace where the malicious sequence
can be safely inserted. Then, once such a path is identified,
the attacker can simulate its execution as above and proceed
to evade the IDS.

In essence, we are mimicking the behavior of the applica-
tion, but with a malicious twist. To continue the biological
analogy, a successful mimic will be recognized as “self” by
the immune system and will not cause any alarms. For this
reason, we dub this the mimicry attack [25]. This style of
attack is very powerful, but it requires a careful examination
of the IDS, and the attacker also has to somehow identify
favorable traces. We will study this topic in greater detail
in Section 4.

Replace system call parameters. Another observation is
that most schemes completely ignore the arguments to the
system call. For instance, an innocuous system call

open("/lib/libc.so", O_RDONLY)

looks indistinguishable (to the IDS) from the malicious call

open("/etc/shadow", O_RDWR).

The evasion technique, then, is obvious. If we want to
write to the shadow password file, there is no need to wait
for the application to open the shadow password file during
normal execution. Instead, we may simply wait for the ap-
plication to open any file whatsoever and then substitute our
parameters ("/etc/shadow", O_RDWR) for the application’s.
This is apparently another form of mimicry attack.

As far as we can tell, almost all host-based intrusion detec-
tion systems completely ignore system call parameters and
return values. The only exception we are aware of is Wagner
and Dean’s static IDS [25], and they look only at a small
class of system call parameters, so parameter-replacement
attacks may be very problematic for their scheme as well.

Insert no-ops. Another observation is that if there is no
convenient way to insert the given malicious sequence into
the application’s system call stream, we can often vary the
malicious sequence slightly by inserting “no-ops” into it. In
this context, the term “no-op” indicates a system call with
no effect, or whose effect is irrelevant to the goals of the at-
tacker. Opening a non-existent file, opening a file and then
immediately closing it, reading 0 bytes from an open file de-
scriptor, and calling getpid() and discarding the result are
all examples of likely no-ops. Note that even if the original
malicious sequence will never be accepted by the IDS, some
modified sequence with appropriate no-ops embedded might
well be accepted without triggering alarms.

We show later in the paper (see Section 4.2 and Table 1)
that, with only one or two exceptions, nearly every system
call can be used as a “no-op.” This gives the attacker great
power, since he can pad out his desired malicious sequence
out with other system calls chosen freely to maximize the
chances of avoiding detection. One might expect intuitively
that every system call that can be found in the normal
database may become reachable with a mimicry attack by
inserting appropriate no-ops; we develop partial evidence to
support this intuition in Section 6.

Generate equivalent attacks. More generally, any way
of generating variations on the malicious sequence with-
out changing its effect gives the attacker an extra degree
of freedom in trying to evade detection. One can imagine
many ways to systematically create equivalent variations on
a given malicious sequence. For instance, any call to read()

on an open file descriptor can typically be replaced by a call
to mmap() followed by a memory access. As another exam-
ple, in many cases the system calls in the malicious sequence
can be re-ordered. An attacker can try many such possibili-
ties to see if any of them can be inserted into a compromised
application without detection, and this entire computation
can be done offline in a single precomputation.

Also, a few system calls give the attacker special power,
if they can be executed without detection as part of the
exploit sequence. For instance, most IDS’s handle fork()

by cloning the IDS and monitoring both the child and par-
ent application process independently. Hence, if an attacker
can reach the fork() system call and can split the exploit
sequence into two concurrent chunks (e.g., overwriting the
password file and placing a backdoor in the ls program),
then the attacker can call fork() and then execute the first
chunk in the parent and the second chunk in the child. As
another example, the ability to execute the execve() sys-
tem call gives the attacker the power to run any program
whatsoever on the system.

Of course, the above ideas for evasion can be combined
freely. This makes the situation appear rather grim for
the defenders: The attacker has many options, and though
checking all these options may require a lot of effort on the
attacker’s part, it also seems unclear whether the defenders
can evaluate in advance whether any of these might work
against a given IDS. We shall address this issue next.

4. A THEORETICAL FRAMEWORK
In this section, we develop a systematic framework for me-

thodically identifying potential mimicry attacks. We start
with a given malicious sequence of system calls, and a model
of the intrusion detection system. The goal is to identify
whether there is any trace of system calls that is accepted
by the IDS (without triggering any alarms) and yet contains
the malicious sequence, or some equivalent variant on it.

This can be formalized as follows. Let Σ denote the set of
system calls, and Σ∗ the set of sequences over the alphabet
Σ. We say that a system call trace T ∈ Σ∗ is accepted (or al-

lowed) by the IDS if executing the sequence T = 〈T1, T2, . . . 〉
does not trigger any alarms. Let A ⊆ Σ∗ denote the set of
system call traces allowed by the IDS, i.e.,

A
def

= {T ∈ Σ∗ : T is accepted by the IDS}.

Also, let M ⊆ Σ∗ denote the set of traces that achieve the
attacker’s goals, e.g.,

M
def

= {T ∈ Σ∗ : T is an equivalent variant
on the given malicious sequence}.

Now we can succinctly state the condition for the existence
of mimicry attacks. The set A ∩ M is exactly the set of
traces that permit the attacker to achieve his goals without
detection, and thus mimicry attacks are possible if and only
if A ∩ M 6= ∅. If the intersection is non-empty, then any
of its elements gives a stealthy exploit sequence that can be
used to achieve the intruder’s goals while reliably evading
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detection.
The main idea of the proposed analytic method is to frame

this problem in terms of formal language theory. In this pa-
per, A is a regular language. This is fairly natural [20], as
finite-state IDS’s can always be described as finite-state au-
tomata and thus accept a regular language of syscall traces.
Moreover, we insist that M also be a regular language. This
requires a bit more justification (see Section 4.2 below), but
hopefully it does not sound too unreasonable at this point.
It is easy to generalize this framework still further2, but this
formulation has been more than adequate for all the host-
based IDS’s considered in our experiments.

With this formulation, testing for mimicry attacks can be
done automatically and in polynomial time. It is a standard
theorem of language theory that if L, L′ are two regular
languages, then so is L ∩ L′, and L ∩ L′ can be computed
effectively [11, §3.2]. Also, given a regular language L′′, we

can efficiently test whether L′′ ?
= ∅, and if L′′ is non-empty,

we can quickly find a member of L′′ [11, §3.3]. From this,
it follows that if we can compute descriptions of A and M,
we can efficiently test for the existence of mimicry attacks.
In the remainder of this section, we will describe first how
to compute A and then how to compute M.

4.1 Modelling the IDS
In Forrest’s IDS, to predict whether the next system call

will be allowed, we only need to know the previous five sys-
tem calls. This is a consequence of the fact that Forrest’s
IDS works by looking at all subtraces of six consecutive sys-
tem calls, checking that each observed subtrace is in the
database of allowable subtraces.

Consequently, in this case we can model the IDS as a
finite-state automaton with statespace given by five-tuples
of system calls and with a transition for each allowable sys-
tem call action. More formally, the statespace is Q = Σ5

(recall that Σ denotes the set of system calls), and we have
a transition

(s0, s1, s2, s3, s4)
s5−→ (s1, s2, s3, s4, s5)

for each subtrace (s0, . . . , s5) found in the IDS’s database
of allowable subtraces. The automaton can be represented
efficiently in the same way that the normal database is rep-
resented.

Next we need a initial state and a set of final (accepting)
states, and this will require patching things up a bit. We
introduce a new absorbing state Alarm with a self-transition
Alarm

s
−→ Alarm on each system call s ∈ Σ, and we ensure

that every trace that sets off an intrusion alarm ends up in

the state Alarm by adding a transition (s0, s1, s2, s3, s4)
s5−→

Alarm for each subtrace (s0, . . . , s5) that is not found in the
IDS’s database of allowable subtraces. Then the final (ac-
cepting) states are all the non-alarm states, excluding only
the special state Alarm.

The initial state of the automaton represents the state the
application is in when the application is first penetrated.
This is heavily dependent on the application and the attack
vector used, and presumably each different vulnerability will
lead to a different initial state. For instance, if there is a
buffer overrun that allows the attacker to gain control just

2For instance, we could allow A or M (but not both) to
be context-free languages without doing any violence to the
polynomial-time nature of our analysis.

after the application has executed five consecutive read()

system calls, then the initial state of the automaton should
be (read, read, read, read, read).

Extensions. In practice, one may want to refine the model
further to account for additional features of the IDS. For
instance, the locality frame count, which is slightly more
forgiving of occasional mismatched subtraces and only trig-
gers alarms if sufficiently many mismatches are seen, can
be handled within a finite-state model. For details, see Ap-
pendix A.

4.2 Modelling the malicious sequence
Next, we consider how to express the desired malicious

sequence within our framework, and in particular, how to
generate many equivalent variations on it. The ability to
generate equivalent variations is critical to the success of
our attack, and rests on knowledge of equivalences induced
by the operating system semantics. In the following, let
M = 〈M1, . . . , Mn〉 ∈ Σ∗ denote a malicious sequence we
want to sneak by the IDS.

Adding no-ops. We noted before that one simple way to
generate equivalent variants is by freely inserting “no-ops”
into the malicious sequence M . A “no-op” is a system call
that has no effect, or more generally, one that has no effect
on the success of the malicious sequence M . For instance, we
can call getpid() and ignore the return value, or call brk()
and ignore the newly allocated returned memory, and so on.

A useful trick for finding no-ops is that we can invoke
a system call with an invalid argument. When the system
call fails, no action will have been taken, yet to the IDS it
will appear that this system call was executed. To give a
few examples, we can open() a non-existent pathname, or
we can call mkdir() with an invalid pointer (say, a NULL
pointer, or one that will cause an access violation), or we can
call dup() with an invalid file descriptor. Every IDS known
to the authors ignores the return value from system calls,
and this allows the intruder to nullify the effect of a system
call while fooling the IDS into thinking that the system call
succeeded.

The conclusion from our analysis is that almost every sys-
tem call can be nullified in this way. Any side-effect-free
system call is already a no-op. Any system call that takes a
pointer, memory address, file descriptor, signal number, pid,
uid, or gid can be nullified by passing invalid arguments.
One notable exception is exit(), which kills the process no
matter what its argument is. See Table 1 for a list of all sys-
tem calls we have found that might cause difficulties for the
attacker; all the rest may be freely used to generate equiv-
alent variants on the malicious sequence3. The surprise is
not how hard it is to find nullifiable system calls, but rather
how easy it is to find them—with only a few exceptions,
nearly every system call is readily nullifiable. This gives the
attacker extraordinary freedom to vary the malicious exploit
sequence.

We can characterize the equivalent sequences obtained
this way with a simple regular expression. Let N ⊆ Σ de-
note the set of nullifiable system calls. Consider the regular

3It is certainly possible that we might have overlooked
some other problematic system calls, particularly on sys-
tems other than Linux. However, we have not yet encoun-
tered any problematic system call not found in Table 1.
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System call Nullifi-
able?

Useful to an
attacker?

Comments

exit() No No Kills the process, which will cause problems for the intruder.
pause() No Unlikely Puts the process to sleep, which would cause a problem for the intruder. Attacker

might be able to cause process to receive signal and wake up again (e.g., by sending
SIGURG with TCP out of band data), but this is application-dependent.

vhangup() No Usually Linux-specific. Hangs up the current terminal, which might be problematic for the
intruder. But it is very rarely used in applications, hence shouldn’t cause a problem.

fork() No Usually Creates a new copy of the process. Since the IDS will probably clone itself to
monitor each separately, this is unlikely to cause any problems for the attacker.
(Similar comments apply to vfork() and to clone() on Linux.)

alarm() No Usually Calling alarm(0) sets no new alarms, and will likely be safe. It does have the
side-effect of cancelling any previous alarm, which might occasionally interfere with
normal application operation, but this should be rare.

setsid() No Usually Creates a new session for this process, if it is not already a session leader. Seems
unlikely to interfere with typical attack goals in practice.

socket() Yes Yes Nullify by passing socket type parameter.
pipe() Yes Yes Nullify by passing NULL pointer parameter.
open() Yes Yes Nullify by passing NULL filename parameter.
. . . Yes Yes . . .

Table 1: A few system calls and whether they can be used to build equivalent variants of a given malicious
sequence. The second column indicates whether the system call can be reliably turned into a “no-op” (i.e.,
nullified), and the third column indicates whether an attacker can intersperse this system call freely in a
given malicious sequence to obtain equivalent variants. For instance, exit() is not nullifiable and kills the
process, hence it is not usable for generating equivalent variants of a malicious sequence. This table shows
all the system calls we know of that an attacker might not be able to nullify; the remaining system calls not
shown here are easily nullified.

expression defined by

M
def

= N ∗M1N
∗M2N

∗ · · · N ∗MnN
∗.

This matches the set of sequences obtained from M by in-
serting no-ops, and any sequence matching this regular ex-
pression will have the same effect as M and hence will be
interchangeable with M . Moreover, this regular expression
may be expressed as a finite-state automaton by standard
methods [11, §2.8], and in this way we obtain a representa-
tion of the set M defined earlier, as desired.

Extensions. If necessary, we could introduce further vari-
ability into the set of variants considered by considering
equivalent system calls. For instance, if a read() system
call appears in the malicious sequence M , we could also eas-
ily replace the read() with a mmap() system call if this helps
avoid detection. As another example, we can often collapse
multiple consecutive read() calls into a single read() call,
or multiple chdir() system calls into a single chdir(), and
so on.

All of these equivalences can also be modelled within our
finite-state framework. Assume we have a relation R on
Σ∗ × Σ∗ obeying the following condition: if X, X ′ ∈ Σ∗

satisfy R(X, X ′), then we may assume that the sequence
X can be equivalently replaced by X ′ without altering the
resulting effect on the system. Suppose moreover that this
relation can be expressed by a finite-state transducer, e.g., a
Mealy or Moore machine; equivalently, assume that R forms
a rational transduction. Define

M
def

= {X ′ ∈ Σ∗ : R(M, X ′) holds}.

By a standard result in language theory [11, §11.2], we find

that M is a regular language, and moreover we can easily
compute a representation of M as a finite-state automaton
given a finite-state representation of R.

Note also that this generalizes the strategy of inserting
no-ops. We can define a relation RN by RN (X, X ′) if X ′ is
obtained from X by inserting no-ops from the set N , and
it is not hard to see that the relation RN can be given by
a finite-state transduction. Hence the idea of introducing
no-ops can be seen as a special case of the general theory
based on rational transductions.

In summary, we see that the framework is fairly general,
and we can expect to model both the IDS and the set of
malicious sequences as finite-state automata.

5. IMPLEMENTATION
We implemented these ideas as follows. First, we trained

the IDS and programmatically built the automaton A from
the resulting database of normal sequences of system calls.
The automaton M is formed as described above.

The next step is to form the composition of A and M
by taking the usual product construction. Our implementa-
tion tests for a non-empty intersection by constructing the
product automaton A × M explicitly in memory [11, §3.2]
and performing a depth-first search from the initial state to
see if any accepting state is reachable [11, §3.3]; if yes, then
we’ve found a stealthy malicious sequence, and if not, the
mimicry attack failed. In essence, this is a simple way of
model-checking the system A against the property M.

We note that there are many ways to optimize this com-
putation by using ideas from the model-checking literature.
For instance, rather than explicitly computing the entire
product automaton in advance and storing it in memory, to
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reduce space we could perform the depth-first search gen-
erating states lazily on the fly. Also, we could use hash-
ing to keep a bit-vector of previously visited states to fur-
ther reduce memory consumption [9, 10]. If this is not
enough, we could even use techniques from symbolic model-
checking to represent the automata A and M using BDD’s
and then compute their product symbolically with standard
algorithms [16].

However, we have found that these fancy optimizations
seem unnecessary in practice. The simple approach seems
adequate for the cases we’ve looked at: in our experiments,
our algorithm runs in less than a second. This is not sur-
prising when one considers that, in our usage scenarios, the
automaton A typically has a few thousand states and M
contains a half dozen or so states, hence their composition
contains only a few tens of thousands of states and is easy
to compute with.

6. EMPIRICAL EXPERIENCE
In this section, we report on experimental evidence for

the power of mimicry attacks. We investigated a number
of host-based anomaly detection systems. Although many
papers have been written proposing various techniques, we
found only one working implementation with source code
that we could download and use in our tests: the pH (for
process homeostasis) system [21]. pH is a derivative of For-
rest, et al.’s early system, with the twist that pH responds
to attacks by slowing down the application in addition to
raising alarms for the system administrator. For each sys-
tem call, pH delays the response by 2m time units, where m
counts the number of mismatched length-6 subtraces in the
last 128 system calls. We used pH version 0.17 running on
a fresh Linux Redhat 5.0 installation with a version 2.2.19
kernel4. Our test host was disconnected from the network
for the duration of our experiments to avoid the possibility
of attacks from external sources corrupting the experiment.

We also selected an off-the-shelf exploit to see whether
it could be made stealthy using our techniques. We chose
one more or less at random, selecting an attack script called
autowux.c that exploits the “site exec” vulnerability in the
wuftpd FTP server. The autowux attack script exploits a
format string vulnerability, and it then calls setreuid(0,0),
escapes from any chroot protection, and execs /bin/sh using
the execve() system call. It turns out that this is a fairly
typical payload: the same shellcode can be found in many
other attack scripts that exploit other, unrelated vulnerabil-
ities5. We conjecture that the authors of the autowux script
just copied this shellcode from some previous source, rather
than developing new shellcode. Our version of Linux Red-
hat 5.0 runs wuftpd version wu-2.4.2-academ[BETA-15](1),
and we trained pH by running wuftpd on hundreds of large

4Since this work was done, version 0.18 of pH has been re-
leased. The new version uses a longer window of length 9,
which might improve security. We did not test whether this
change improves the resistance of pH to mimicry attacks.
5It is interesting and instructive to notice that such a
widespread attack payload includes provisions by default
to always attempt escaping from a chroot jail. The lesson
is that, if a weak protection measure becomes widespread
enough, eventually attackers will routinely incorporate
countermeasures into all their attacks. The implications for
intrusion detection systems that are susceptible to mimicry
attacks are troubling.

file downloads over a period of two days. We verified that
pH detects the unmodified exploit6.

Next, we attempted to modify the exploit to evade de-
tection. We parsed pH’s database of learned length-6 sub-
traces and built an automaton A recognizing exactly those
system call traces that never cause any mismatches. We did
not bother to refine this representation to model the fact
that intruder can safely cause a few occasional mismatches
without causing problems (see Appendix A), as such a re-
finement turned out to be unnecessary. Also, we examined
the point in time where autowux mounts its buffer overflow
attack against the wuftpd server. We found that the window
of the last five system calls executed by wuftpd is

(fstat(), mmap(), lseek(), close(), write())

when the exploit first gains control. This determines the
initial state of A.

In addition, we reverse engineered the exploit script and
learned that it performs the following sequence of 15 system
calls:

setreuid(0,0), dup2(1,2), mkdir("sh"), chroot("sh"),
9 × chdir(".."), chroot("/"), execve("/bin/sh").

We noticed that the nine consecutive chdir("..") calls can,
in this case, be collapsed into a single

chdir("../../../../../../../../../").

As always, one can also freely introduce no-ops. With these
two simple observations, we built an automaton M recog-
nizing the regular expression

N ∗ setreuid() N ∗ dup2() N ∗ mkdir() N ∗ chroot() N ∗

chdir() N ∗ chroot() N ∗ execve() N ∗.

Our program performs a depth-first search in the product
automaton A ×M and informs us that A ∩ M = ∅, hence
there is no stealthy trace matching the above regular expres-
sion.

Next, we modified the attack sequence slightly by hand
to repair this deficiency. After interactively invoking our
tool a few times, we discovered the reason why the original
pattern was infeasible: there is no path through the normal
database reaching dup2(), mkdir(), or execve(), hence no
attack that uses any of these system calls can completely
avoid mismatches. However, we note that these three system
calls can be readily dispensed with. There is no need to
create a new directory; an existing directory will do just as
well in escaping from the chroot jail, and as a side benefit
will leave fewer traces. Also, the dup2() and execve() are
needed only to spawn an interactive shell, yet an attacker
can still cause harm by simply hard-coding in the exploit
shellcode the actions he wants to take without ever spawning
a shell. We hypothesized that a typical harmful action an
attacker might want to perform is to add a backdoor root
account into the password file, hence we proposed that an
attacker might be just as happy to perform the following

6We took care to ensure that the IDS did not learn the ex-
ploit code as “normal” in the process. All of our subsequent
experiments were on a virgin database, trained from scratch
using the same procedure and completely untouched by any
attack.
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read() write() close() munmap() sigprocmask() wait4()

sigprocmask() sigaction() alarm() time() stat() read()

alarm() sigprocmask() setreuid() fstat() getpid()

time() write() time() getpid() sigaction() socketcall()

sigaction() close() flock() getpid() lseek() read()

kill() lseek() flock() sigaction() alarm() time()

stat() write() open() fstat() mmap() read() open()

fstat() mmap() read() close() munmap() brk() fcntl()

setregid() open() fcntl() chroot() chdir() setreuid()

lstat() lstat() lstat() lstat() open() fcntl() fstat()

lseek() getdents() fcntl() fstat() lseek() getdents()

close() write() time() open() fstat() mmap() read()

close() munmap() brk() fcntl() setregid() open() fcntl()

chroot() chdir() setreuid() lstat() lstat() lstat()

lstat() open() fcntl() brk() fstat() lseek() getdents()

lseek() getdents() time() stat() write() time() open()

getpid() sigaction() socketcall() sigaction() umask()

sigaction() alarm() time() stat() read() alarm()

getrlimit() pipe() fork() fcntl() fstat() mmap() lseek()

close() brk() time() getpid() sigaction() socketcall()

sigaction() chdir() sigaction() sigaction() write()

munmap() munmap() munmap() exit()

Figure 1: A stealthy attack sequence found by our
tool. This exploit sequence, intended to be exe-
cuted after taking control of wuftpd through the “site
exec” format string vulnerability, is a modification
of a pre-existing sequence found in the autowux ex-
ploit. We have underlined the system calls from the
original attack sequence. Our tool takes the under-
lined system calls as input, and outputs the entire
sequence. The non-underlined system calls are in-
tended to be nullified: they play the role of “seman-
tic no-ops,” and are present only to ensure that the
pH IDS does not detect our attack. The effect of the
resulting stealthy exploit is to escape from a chroot
jail and add a backdoor root account to the system
password file.

variant on the original exploit sequence:

setreuid(0,0), chroot("pub"),
chdir("../../../../../../../../../"), chroot("/"),
open("/etc/passwd", O APPEND|O WRONLY),
write(fd, "toor:AAaaaaaaaaaaa:0:0::/:/bin/sh", 33),
close(fd), exit(0)

where fd represents the file descriptor returned by the open()
call (this value can be readily predicted). The modified at-
tack sequence becomes root, escapes from the chroot jail,
and appends a backdoor root account to the password file.
To check whether this modified attack sequence could be
executed stealthily, we built an automaton M recognizing
the regular expression

N ∗ setreuid() N ∗ chroot() N ∗ chdir() N ∗ chroot()

N ∗ open() N ∗ write() N ∗ close() N ∗ exit() N ∗.

We found a sequence that raises no alarms and matches this
pattern. See Fig. 1 for the stealthy sequence. Finding this
stealthy sequence took us only a few hours of interactive
exploration with our search program, once the software was
implemented.

We did not build a modified exploit script to implement

this attack. Instead, to independently verify the correctness
of the stealthy sequence, we separately ran this sequence
through stide7 and confirmed that it would be accepted
with zero mismatches by the database generated earlier.
Note that we were able to transform the original attack se-
quence into a modified variant that would not trigger even
a single mismatch but that would have a similarly harmful
effect. In other words, there was no need to take advan-
tage of the fact that pH allows a few occasional mismatches
without setting off alarms: our attack would be successful
no matter what setting is chosen for the pH locality frame
count threshold. This makes our successful results all the
more meaningful.

In summary, our experiments indicate that sophisticated
attackers can evade the pH IDS. We were fairly surprised at
the success of the mimicry attack at converting the autowux

script into one that would avoid detection. On first glance,
we were worried that we would not be able to do much with
this attack script, as its payload contains a fairly unusual-
looking system call sequence. Nonetheless, it seems that the
database of normal system call sequences is rich enough to
allow the attacker considerable power.

Shortcomings. We are aware of several significant limita-
tions in our experimental methodology. We have not com-
piled the stealthy sequence in Fig. 1 into a modified exploit
script or tried running such a modified script against a ma-
chine protected by pH. Moreover, we assumed that we could
modify the autowux exploit sequence so long as this does not
affect the effect of a successful attack; however, our exam-
ple would have been more convincing if the attack did not
require modifications to the original exploit sequence.

Also, we tested only a single exploit script (autowux), a
single vulnerable application (wuftpd), a single operating
system (Redhat Linux), a single system configuration (the
default Redhat 5.0 installation), and a single intrusion de-
tection system (pH). This is enough to establish the pres-
ence of a risk, but it does not provide enough data to assess
the magnitude of the risk or to evaluate how differences in
operating systems or configurations might affect the risk.

We have not tried to assess how practical the attack might
be. We did not study how much effort or knowledge is re-
quired from an attacker to mount this sort of attack. We
did not empirically test how effectively one can predict the
configuration and IDS normal database found on the target
host, and we did not measure whether database diversity is
a significant barrier to attack. We did not estimate what
percentage of vulnerabilities would both give the attacker
sufficient control over the application to mount a mimicry
attack and permit injection of enough foreign code to ex-
ecute the entire stealthy sequence. Also, attacks often get
better over time, and so it may be too soon to draw any
definite conclusions. Because of all these unknown factors,
more thorough study will be needed before we can confi-
dently evaluate the level of risk associated with mimicry
attacks in practice.

7Because pH uses lookahead pairs, stide is more restrictive
than pH. However, the results of the test are still valid:
since our modified sequence is accepted by stide, we can
expect that it will be accepted by pH, too. If anything,
using stide makes our experiment all the more meaningful,
as it indicates that stide-based IDS’s will also be vulnerable
to mimicry attacks.
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7. RELATED WORK
There has been some other recent research into the se-

curity of host-based anomaly detection systems against so-
phisticated, adaptive adversaries.

Wagner and Dean briefly sketched the idea of mimicry
attacks in earlier work [25, §6]. Giffin, Jha, and Miller elab-
orated on this by outlining a metric for susceptibility to eva-
sion attacks based on attack automata [6, §4.5]. Somayaji
suggested that it may be possible in principle, but difficult
in practice, to evade the pH IDS, giving a brief example to
justify this claim [22, §7.5]. None of these papers developed
these ideas in depth or examined the implications for the
field, but they set the stage for future research.

More recently, and independently, Tan, Killourhy, and
Maxion provided a much more thorough treatment of the
issue [23]. Their research shows how attackers can render
host-based IDS’s blind to the presence of their attacks, and
they presented compelling experimental results to illustrate
the risk. In follow-up work, Tan, McHugh, and Killourhy
refined the technique and gave further experimental confir-
mation of the risk from such attacks [24]. Their methods
are different from those given in this paper, but their results
are in agreement with ours.

8. DISCUSSION
Several lessons suggest themselves after these experiments.

First and foremost, where possible, intrusion detection sys-
tems should be designed to resist mimicry attacks and other
stealthy behavior from sophisticated attackers. Our attacks
also give some specific guidance to IDS designers. It might
help for IDS’s to observe not only what system calls are at-
tempted but also which ones fail and what error codes are
returned. It might be a good idea to monitor and predict
not only which systems calls are executed but also what ar-
guments are passed; otherwise, the attacker might have too
much leeway. Moreover, the database of normal behavior
should be as minimal and precise as possible, to reduce the
degree of freedom afforded to an attacker.

Second, we recommend that all future published work
proposing new IDS designs include a detailed analysis of the
proposal’s security against evasion attacks. Even if this type
of vulnerability cannot be completely countered through
clever design, it seems worthwhile to evaluate carefully the
risks.

Finally, we encourage IDS designers to publicly release a
full implementation of their designs, to enable independent
security analysis. There were several proposed intrusion de-
tection techniques we would have liked to examine in detail
for this work, but we were unable to do so because we did
not have access to a reference implementation.

9. CONCLUSIONS
We have shown how attackers may be able to evade de-

tection in host-based anomaly intrusion detection systems,
and we have presented initial evidence that some IDS’s may
be vulnerable. It is not clear how serious a threat mimicry
attacks will be in practice. Nonetheless, the lesson is that
it is not enough to merely protect against today’s attacks:
one must also defend against tomorrow’s attacks, keeping in
mind that tomorrow’s attackers might adapt in response to
the protection measures we deploy today. We suggest that
more attention could be paid in the intrusion detection com-

munity to security against adaptive attackers, and we hope
that this will stimulate further research in this area.
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APPENDIX

A. EXTENSIONS: HOW TO MODEL MORE
SOPHISTICATED IDS’S

Forrest, et al., have proposed [2] counting the total num-
ber of mismatched length-6 subtraces and only triggering an
alarm if the total mismatch count exceeds some threshold,
say 7 mismatches. This gives the intruder an extra degree
of freedom, because now the exploit code is free to cause a
few mismatches, as long as they are not too numerous.

We can easily extend our finite-state model above to ac-
count for this degree of freedom, as follows. We add an
extra dimension to the statespace, counting the number of

mismatches so far. Thus, the statespace becomes Q′ def

=
(Q × {0, 1, . . . , 6}) ∪ {Alarm}, and each non-alarm state is
a pair (q, m) of a state q ∈ Q = Σ5 from the old model
and a count m ∈ {0, . . . , 6} of the number of mismatches

seen so far. For each non-alarm transition q
s

−→ q′ of
the old model, we introduce transitions (q, m)

s
−→ (q′, m)

for each m = 0, 1, . . . , 6. Also, for each alarm transition

(s0, . . . , s4)
s

−→ Alarm of the old model, we introduce tran-

sitions ((s0, . . . , s4), m)
s

−→ ((s1, . . . , s4, s), m + 1) for each
m = 0, 1, . . . , 6, where we view the notation (q, 7) as short-
hand for the Alarm state. As usual, we introduce self-loops
from Alarm to itself on each system call, and the accepting
states are exactly the non-alarm states. Note that the size
of the automaton has increased by only a small constant
factor, hence this transformation should be practical.

As another example, Warrender, et al., propose a slightly
different extension, which is more forgiving of occasional
mismatches [26]. They suggest that the IDS should trigger
an alarm only if at least 6 of the last 20 length-6 subtraces
are mismatches. We can model this extension within our
finite-state framework by adding an extra dimension to the
statespace to account for the history of the last 20 subtraces.

Let W
def

= {S ⊆ {1, 2, . . . , 20} : |S| ≤ 6} denote the set of
all subsets of {1, 2, . . . , 20} of cardinality at most 6. Then
the statespace of our refined finite-state automaton becomes

Q′ def

= (Q×W )∪{Alarm}, and each non-alarm state is a pair
(q, {i1, . . . , ik}) of a state q ∈ Q = Σ5 from the unadorned
model and a list i1, . . . , ik of times in the recent past where
a mismatch was found. If S is a set of integers, let delay(S)

denote the set delay(S)
def

= {s + 1 : s ∈ S} ∩ {1, . . . , 20}.

For each non-alarm transition q
s

−→ q′ of the old model, we
introduce transitions (q, S)

s
−→ (q′, delay(S)) for each S ∈

W . Also, for each alarm transition (s0, . . . , s4)
s

−→ Alarm of

the old model, we introduce transitions ((s0, . . . , s4), m)
s

−→
((s1, . . . , s4, s), delay(S) ∪ {1}) for each S ∈ W . Here we
view the notation (q, S) as short-hand for the Alarm state
when S /∈ W , i.e., when |S| > 6. This transformation does
increase the size of the automaton by a noticeable amount:
namely, by a factor of

�
20

6 � + · · · +
�
20

0 � = 60460.
In short, we can see that many natural extensions and

variations on the basic IDS scheme can be incorporated
within our framework. We conclude that the idea of mod-
elling an IDS as a finite-state automaton seems broadly ap-
plicable.
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