
Specifying and Enforcing Constraints in
Role-Based Access Control

Jason Crampton

Information Security Group
Royal Holloway, University of London
Egham, TW20 0EX, United Kingdom

jason.crampton@rhul.ac.uk

ABSTRACT
Constraints in access control in general and separation of
duty constraints in particular are an important area of re-
search. There are two important issues relating to con-
straints: their specification and their enforcement. We be-
lieve that existing separation of duty specification schemes
are rather complicated and that the few enforcement models
that exist are unlikely to scale well.
We examine the assumptions behind existing approaches

to separation of duty and present a combined specification
and implementation model for a class of constraints that
includes separation of duty constraints. The specification
model is set-based and has a simpler syntax than existing
approaches. We discuss the enforcement of constraints and
the relationship between static, dynamic and historical sep-
aration of duty constraints. Finally, we propose a model for
a scalable role-based reference monitor, based on dynamic
access control structures, that can be used to enforce con-
straints in an efficient manner.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Ac-
cess controls; K.6.5 [Management of Computing and
Information Systems]: Security and Protection; I.6.0
[Computing Methodologies]: Simulation and Modeling

General Terms
Security, Theory

Keywords
role-based access control, separation of duty constraint, au-
thorization constraint, enforcement context

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT’03, June 2–3, 2003, Como, Italy.
Copyright 2003 ACM 1-58113-681-1/03/0006 ...$5.00.

1. INTRODUCTION
Separation of duty is an important control principle in

management whereby sensitive combinations of duties are
partitioned between different individuals in order to prevent
the violation of business rules. A very simple example of
this is that cheques might require two different signatures.
In a military context, we might require that two different
individuals must independently arm and launch a nuclear
missile.
The research community has taken an active interest in

incorporating separation of duty controls into computer sys-
tems since the late 1980s. One of the rules of the Clark-
Wilson model [6] requires that separation of duty require-
ments must be met. Since then, several papers have studied
separation of duty. One of the best known requirements
for separation of duty is embodied in the Chinese Wall
model [5], in which access to documents that could result
in a commercial conflict of interest is strictly controlled. It
was suggested that the Chinese Wall model could be imple-
mented by maintaining a history matrix indexed by subjects
and objects, whose (binary) entries indicated which docu-
ments had been accessed by which users.
Role-based access control models have attracted consid-

erable research interest in recent years due to their innate
ability to model organizational structure and their potential
to reduce administrative overheads. An important feature
of role-based models has been the specification of separation
of duty constraints [10, 12, 13, 15, 16].
The seminal paper of Simon and Zurko on separation of

duty in role-based systems [16] proposed a rule-based spec-
ification scheme for separation of duty constraints and a
history-based implementation to enforce those constraints.
Several authors have since identified increasingly complex
separation of duty requirements and specification schemes
to express them [2, 10, 11, 12]. None of these papers have
suggested a model for implementing such constraints.
Separation of duty requirements are an important issue

in workflow management systems. Bertino et al. suggest
that such requirements can be enforced using logic program-
ming techniques to compute all valid execution paths for a
workflow (in the presence of constraints) and permitting an
access request to proceed only if it belongs to a valid exe-
cution path [4]. It is our belief that this approach will not
scale well to large-scale applications.
In this paper we propose a simple specification scheme

43



for separation of duty constraints. In fact, we can define
constraints that are not separation of duty constraints in
the traditional sense. Therefore, we will use the term au-
thorization constraint [4]. Unlike most existing specification
schemes, we do not explicitly specify the conditions that
must be preserved if the constraint is to be satisfied. This is
for two reasons: firstly, we believe that this approach places
an unnecessary burden on the syntax of the specification
scheme; and, secondly, that the constraints should be en-
forced by the reference monitor. Therefore, we also propose
a simple implementation model that can be used to enforce
a restricted set of the authorization constraints supported
by our specification scheme. This model is based on the
idea of dynamic access control structures that are updated
when constraint-relevant events occur.
The major contributions of this paper are to provide a

simple specification scheme for role-based constraints and a
novel implementation model that should prove more scalable
than existing approaches. While the specification scheme is
slightly less expressive than the most recent alternatives [2,
12], we believe that our approach is far simpler to under-
stand and has a much less cumbersome syntax. Moreover,
our implementation scheme is simpler than the one proposed
by Simon and Zurko [16], while the specification scheme sup-
ports a greater range of constraints with a simpler syntax
than their model.
In the next section, we make some preliminary observa-

tions about separation of duty constraints in order to mo-
tivate our approach. In Section 3, we will define our spec-
ification scheme and provide a comprehensive list of exam-
ples. In Section 4, we introduce our enforcement model and
some illustrative examples. In Section 5, we discuss related
work, compare it to our approach, and then discuss some
shortcomings of our approach. Finally, we summarize the
contributions of the paper and discuss future work.

2. BACKGROUND
We will introduce a role-based access control model to

provide a context for the specification scheme and enforce-
ment model. We will also discuss constraints in role-based
models and workflow systems.
We then discuss some important issues related to con-

straint specification in a role-based model. This discussion
will provide the motivation for our specification scheme and
for certain aspects of the enforcement model.

2.1 RBAC96
We develop the material in this paper in the context of

RBAC96, the most widely known role-based access control
model [15]. (In fact, RBAC96 consists of four different mod-
els, RBAC0, RBAC1, RBAC2 and RBAC3, the last two of
which incorporate separation of duty constraints.) RBAC96
identifies the following sets: U , a set of users; R, a partially
ordered set of roles, which is usually interpreted as a role hi-
erarchy RH ⊆ R×R; P , a set of permissions; UA ⊆ U×R, a
user-role assignment relation; and PA ⊆ P×R, a permission-
role assignment relation.

2.2 Permissions
Although some researchers regard permissions as “unin-

terpreted symbols” [9], we believe that is helpful to give
them some semantics in order to make some of the con-
straints we discuss more concrete. We take the conventional

view that a permission is an ability to do something to an
object [16]. Hence we define an abstract permission to be
a pair (t, a) where t is a type and a is an action. A per-
mission is a pair (o, a), where o is an instance of the type
t.1 Permissions and abstract permissions are assigned to
roles. The assumption is that a new object o (of type t) is
created in the system by a role invoking the abstract per-
mission (t,new), where new is the create action (constructor
method) for the type t. At this point any role with permis-
sions defined for that type obtains additional permissions
for the particular instantiation of that type, which could
include (o, set) (“write”) and (o, get) (“read”), for example.

2.3 RBAC constraints
The existence of a role hierarchy facilitates the specifica-

tion of separation of duty constraints because of its ability
to model organizational structures. For example, a purchase
order clerk role and a finance clerk role will typically be in-
comparable roles in the role hierarchy, and it may well be
an organizational requirement that no user be assigned to
both roles.
In a role-based access control environment, there are six

sets of entities that can be part of a separation of duty con-
straint: users (U), roles (R), permissions (P ), objects (O),
types (T ) and actions (A).2 For example, given a cheque
type for which the actions raise and issue are defined, we
may wish to constrain the application so that the same user
(acting in the role of payment clerk, say) cannot invoke both
actions on the same cheque object. This is an example of a
separation of duty constraint defined for users and permis-
sions.3

In a workflow environment, it may be that the approve
action for the cheque type must be invoked twice by dif-
ferent users and by a role that is more senior than the
role that invoked the raise action [4]. Alternatively, we
may have an approve action and insist that the permissions
(cheque, approve) and (cheque, raise) are not assigned to the
same role.
The literature has long recognized that there are three dif-

ferent “flavours” of separation of duty constraint. Static sep-
aration of duty typically constrains the assignment of users
and permissions to roles. Dynamic separation of duty typi-
cally constrains the activation of roles and invocation of per-
missions in the run-time environment. Historical separation
of duty typically constrains the invocation of permissions
over the course of time; for example, we may require that
no user can raise and issue the same cheque.
In many cases, a constraint will apply to the same object,

as in the cheque example above. Several papers have dis-
tinguished between order-dependent and order-independent

1This interpretation of permissions has a natural implemen-
tation in an object-oriented application where a type corre-
sponds to a class and an object is an instantiation of a class.
(It would also be possible to view a permission as some form
of query on a database table or view.)
2A constraint defined on a type is assumed to apply to all
instances of the type.
3In a more sophisticated model, we might assume that an
abstract permission is a triple (type, domain, action), where
the domain identifies a subset of objects that are instances
of the type. We can then define a separation of duty con-
straint on the permissions (account , companya, read) and
(account , companyb, read) in order to specify a Chinese Wall
style policy.

44



constraints [12, 16]. In the former case, the constraint would
require that a cheque is raised before it is issued. In the lat-
ter case, no such requirement would be made.
While the distinction between these cases seems superfi-

cially attractive, we believe that the life cycle of an object
will be determined by the business rules and will be encoded
in the application. In our example, it is unlikely that a fi-
nancial application would permit a non-existent cheque (one
that has not been raised) to be issued. We believe, therefore,
that it is unnecessary to be able to express order-dependent
requirements within a constraint specification scheme. We
will discuss the implications of this decision when we review
related work.

2.4 Observations
We now make some observations about separation of duty

that summarize the contents of this section and indicate how
they will inform our approach.

• Separation of duty is not a complicated concept!

Separation of duty requirements articulate circum-
stances that would lead to the violation of business
rules. A violation could be regarded as the occurrence
of a set of events that contravene the business rules. In
other words, to specify a separation of duty constraint
we merely need to enumerate the “undesirable” set(s)
of events, and to enforce a constraint we must ensure
that all the events specified in that set cannot occur.

• A specification scheme must be straightforward to use:
it is the users of an application who will be required
to specify separation of duty constraints.

Research papers on separation of duty in computer
systems regularly describe constraints that are defined
in terms of users and in terms of roles. It is not imme-
diately obvious when these constraints are to be spec-
ified. Consider, for example, an integrated purchasing
and bought ledger application that raises purchase or-
ders for goods and services and also pays the resulting
invoices. There are certain separation of duty con-
straints that could be hard-wired into the application
– no user can be assigned to both the purchase order
clerk and finance clerk roles, for example. However,
there are certain separation of duty constraints that
can only be specified by the administrators of a par-
ticular installation of that application.

• A specification scheme must include historical con-
straints.

Static separation of duty is not a practical or realis-
tic variation of separation of duty because it does not
capture most real-world organisational control princi-
ples [16].

• We assume that historical constraints are order-
independent.

That is, we assume the business logic encoded in the
application imposes an ordering on execution.

3. THE SPECIFICATION OF CON-
STRAINTS

Informally, a constraint defines a family of “bad” sets.
Enforcement of a constraint requires that for all bad sets,

it is never the case that all elements in a bad set can
occur. For example, a static separation of duty con-
straint might require that no user can be assigned to
both roles r1 and r2. In this case, the “bad” sets
are {(u1, r1), (u1, r2)} , . . . , {(un, r1), (un, r2)}, where U =
{u1, . . . , un}. (The constraint will be enforced by consid-
ering the UA relation.)

3.1 Formal description
We now formally define our specification scheme. A con-

straint is a triple (s, c, x), where s is the (constraint) scope,
c is the constraint set and x is the (temporal) context and
takes one of the following values: static, dynamic and histor-
ical, which are denoted s, d and h, respectively. The scope
and the constraint set are subsets of one of the following sets:
U , R, P , T and O. The static separation duty example in
the introduction to this section is written (U, {r1, r2} , s).
A constraint defines a family of sets: in particular, the

constraint c = (A,B, x) defines the family of sets

Qc =
⋃

a∈A

({a} ×B) .

Each Q ∈ Qc is called a constrained (authorization) set.
Each q ∈ Q, where Q is a constrained set, is called
a constrained (authorization) request. For example, if
(U, {p1, p2} , h) is a constraint, then for each u ∈ U ,
{(u, p1), (u, p2)} is a constrained set and (u, pi) is a con-
strained request.
A constrained authorization set is a subset ofX×Y , where

X,Y ∈ {U,R, P, T,O}. X × Y is called the (constraint)
enforcement context. For example, the enforcement context
of (U, {r1, r2} , s) is UA. We will discuss this in more detail
in Section 4.1.

3.2 Examples
We now enumerate some of the varieties of separation of

duty that have been identified in the literature and that can
be expressed in our scheme. For comparative purposes, we
indicate the correspondence between our examples and those
in the paper by Jaeger and Tidswell [12], which provides
probably the most comprehensive set of examples in the
literature.4

We do not enumerate all the possibilities available within
our scheme. In particular, we do not generally discuss the
three constraints that are possible by considering the dif-
ferent temporal contexts. We implicitly assume the reader
will appreciate the different semantics of each of these con-
straints. We will focus on constraints that have received
attention in the literature or ones that we believe are novel
and have some useful application.

4The RCL 2000 constraint specification language [2] and the
specification scheme proposed by Jaeger and Tidswell admit
the articulation of certain constraints that are not possible in
our scheme. These constraints are based on the aggregation
of users and permissions with quantification over sets and
members of sets. However, we believe that our proposal
is simpler to understand; we will also provide a model for
implementing our constraints, which, with the exception of
the Adage implementation [16], has not been attempted in
previous work. It should also be noted that Jaeger and
Tidswell’s scheme has been designed to be applicable in a
general access control model, not just in role-based access
control models. We believe that our scheme can be extended
easily to other access control models.

45



3.2.1 User-based separation of duty
In this case, the constraint set is a subset of U .

• The constraint (R, {u1, u2} , s) is a separation of duty
constraint that requires that no role is assigned to both
r1 and r2 [12, Example 1].

• The constraint ({r1, . . . , rn} , {u1, u2} , s) is a con-
straint that requires that no role in a specified set (the
scope {r1, . . . , rn}) is assigned to both u1 and u2 [12,
Example 8].

3.2.2 Role-based separation of duty
In this case, the constraint set is a subset of R, where RH

is the partially ordered set of roles 〈R,�〉. Constraints such
as these were among the first identified in the literature.

• The constraint (U, {r1, r2} , s) is a simple static sepa-
ration of duty constraint that requires that no user is
assigned to both r1 and r2 [12, Example 3].

– (U, {r1, r2} , d) specifies the corresponding dy-
namic separation of duty constraint.

– The constraint (U, {r1, . . . , rn} , s) requires that
no user is assigned to all the roles in the constraint
set.

• The constraint ({u1, . . . , un} , {r1, r2} , s) is a similar
constraint in which no member of a specified set of
users can be assigned to both r1 and r2 [12, Example
8].

– Another interesting possibility is to use a role as
a placeholder for a set of users. That is we define
a role r that has no permissions assigned to it and
use it to define a group of users. We denote the
set of users assigned to a role r by U(r). That is,
U(r) = {u ∈ U : (u, r) ∈ UA}. We can then de-
fine a constraint (U(r), {r1, r2} , s), which states
that no user in the group associated with r can
be assigned to both r1 and r2.

• The constraint ({u1, . . . , un} , {r} , s) is a constraint
that requires that no user in a specified set can be
assigned to the role r [12, Example 9].

Constraints such as these are rarely supported by ex-
isting specification schemes. However, there are a
number of practical examples where such constraints
are useful.

For example, in the role graph model it is generally as-
sumed that no user should be assigned to MaxRole [13];
(U, {MaxRole} , s) expresses this constraint succinctly.
In other words, we can express role exclusion con-
straints: such constraints can also be used to impose a
“ceiling” on the roles to which a user can be assigned.
For example, the constraint (u, {r} , s) prevents user u
from being assigned to the role r (or any role more se-
nior than r). (Similar constraints on permissions can
be used to impose a “floor” on the set of roles to which
a permission can be assigned.)

• The requirement that no user is assigned to more than
one role in a specified set {r1, . . . , rn}, say, can be ex-
pressed as

(
n
2

)
constraints of the form (U, {ri, rj} , s),

1 � i < j � n [12, Example 12].

• The constraint ({p} , {r1, r2} , s) is a static constraint
that requires that p cannot be assigned to both r1 and
r2.

We can envisage domain-based requirements where
permissions for certain mutually exclusive activities
should be separated in this way. The Chinese Wall
model [5] is a potential application of such a constraint.

3.2.3 Permission-based separation of duty
In this case, the constraint set is a subset of P , the set of

permissions.

• The constraint (U, {p1, p2} , s) is a static separation of
duty constraint that requires that no user can invoke
both permission p1 and p2.

An example of why such a constraint might be useful
arises if we do not want any user to be able to raise
both a purchase order and a cheque.

– The constraint (U, {p1, p2} , h) is a historical ver-
sion of the previous separation of duty con-
straint [12, Example 4].

Such a constraint could be used to specify that
no user can both raise and issue a cheque.

• The constraint (U, {p1, . . . , pn} , c) is a constraint that
requires that no user can invoke all the permissions
to complete some task (where the execution of a task
is assumed to be equivalent to the invocation of a
sequence of permissions). This constraint can be
static [12, Example 10], dynamic [12, Example 11] or
historical (as discussed by Bertino et al. in their anal-
ysis of workflow systems [4]).

• The constraint (R, {p1, p2} , h) is a historical constraint
that requires that no role can invoke both p1 and
p2 [12, Example 2].

We can also specify constraints of the form
(R, {p1, p2, p3} , s), which states that a role can be as-
signed to any two of the permissions in the constraint
set (but not all three). Bertino et al. [4] have iden-
tified certain workflow applications that require such
constraints.

3.2.4 Object-based separation of duty
In this case, the constraint set is a subset of O, the set of

objects, or of T , the set of types.

• The constraint (U, {o1, o2} , h) is a historical constraint
that no user can ever access both object o1 and o2 [12,
Example 6].

This constraint could be used to implement the Chi-
nese Wall model.

• The constraint (R, {o1, o2} , h) is a similar constraint
where the scope is the set of roles rather than the set
of users [12, Example 5].

This is a weaker constraint than the one above because
we could have o1 and o2 associated with roles r1 and
r2, respectively. Then any user assigned to both these
roles can access both objects.

• The constraint (P, {o1, o2} , h) is an even weaker con-
straint where the scope of the constraint is the set of
permissions, which does not prevent either a role or a
user having access to both o1 and o2.

46



4. ENFORCING CONSTRAINTS IN A
ROLE-BASED SYSTEM

A constrained role-based system (hereafter simply referred
to as a system) is a role-based system for which a set of
constraints C is defined. We define the configuration of a
system to be the tuple (UA,PA,RH , C). We define the state
of a system to be the tuple (UA,PA,RH , C,UAI , PI), where
UAI ⊆ UA denotes the set of user sessions (each of these
sessions is a set of roles activated by a user) and PI ⊆ U×P
denotes the set of permissions that are currently invoked.
(For each (u, p) ∈ PI , there exists (u, r) ∈ UAI such that
(p, r) ∈ PA.)5

A request is an interaction by a user with a system that
potentially results in a change to the configuration or state of
the system. In a role-based context, such requests include:
a request to invoke a permission; a request to activate a
role or to establish a session; attempts to assign a user or a
permission to a role; and changes to the role hierarchy. An
authorization constraint c is enforced if for all Q ∈ Qc, it
is not possible for all q ∈ Q to be granted. We will assume
that constraints are enforced by a constraint monitor, which
can be viewed as an additional component of the reference
monitor. We will describe possible implementations of the
constraint monitor in more detail in the Sections 4.2 and 4.3.

4.1 The enforcement context of a constraint
Constraints can be enforced either by the configuration or

the state or the state history of a system. These are usu-
ally referred to as static, dynamic and historical constraints,
respectively.
For example, (U, {r1, r2} , x) is a typical constraint which

requires that no user be assigned both r1 and r2. If
this is a static constraint, then it is satisfied if for all
users u, at most one of (u, r1) and (u, r2) belongs to UA
(that is, {(u, r1), (u, r2)} 
⊆ UA). If, however, it is a dy-
namic constraint, then it is satisfied if for all users u,
{(u, r1), (u, r2)} 
⊆ UAI . (That is, no user has activated
both r1 and r2. Note that it is possible in this case for a
user to be assigned to both roles, but the user will not be
permitted to activate both in the same session.)
However, it is difficult to interpret this as a historical con-

straint. Should it mean that once u has been assigned to r1
(say), then u can never be assigned to r2. Alternatively,
should it mean that once u has activated r1, then u can
never activate r2. These interpretations of enforcement con-
text could be classified as static historical and dynamic his-
torical, respectively. To the author’s knowledge, no such
distinction exists in the literature. A detailed discussion
of these constraints and whether we need additional his-
torical interpretations of them is beyond the scope of this
paper. We believe that the dynamic historical interpreta-
tion is likely to be more meaningful in practice, and is the
interpretation we shall adopt in the remainder of this paper.
It is easily seen that the enforcement of a static autho-

rization constraint implies that the corresponding dynamic
constraint is enforced. For example, if the static constraint
(U, {r1, r2} , s) is enforced, then no user can possibly activate
5For every s ∈ S, the set of roles in s is a subset of the roles
implicitly assigned to the user who activated s [15]. The set
PI is similar to the set of currently granted subject-object-
access triples that forms part of the definition of state in
the Bell-LaPadula model [3]. (This set is used to determine
whether a request will violate the *-property.)

both roles (since a user must be assigned to a role before it
can be activated).
However, the dependencies between historical and static

enforcement are less clear. In fact, if a static constraint is en-
forced, then the following counterexample shows we cannot
infer that the corresponding historical constraint is enforced.
Suppose that u is assigned to r1, then has the assignment
revoked and is subsequently assigned to r2. (Note that this
necessarily violates the static historical constraint.) The
static constraint has not been violated, but it is possible
that u has activated both r1 and r2 during the periods that
u was assigned to the respective roles, violating the dynamic
historical constraint.
Similarly, we cannot infer that the enforcement of a dy-

namic historical constraint implies that the corresponding
static constraint has been enforced. However, we can assert
that the enforcement of a static historical constraint implies
that the corresponding static constraint has been enforced.
Figure 1 shows the relationships that exist between the dif-
ferent enforcement contexts. (An arrow between nodes in-
dicates that the enforcement in the context at the head of
the arrow is implied by enforcement in the context at the
tail of the arrow.)

�

static
historical

❅
❅

❅
❅�

�
�

�
�✒

�
dynamic
historical

�
�

�
�✒

� static❅
❅

❅
❅�
�

dynamic

Figure 1: The relationship between enforcement
contexts

4.2 Blacklists: Enforcing historical con-
straints

In order to enforce a historical authorization constraint it
may be necessary to deny certain requests. For example, if
(U, {p1, p2} , h) is a constraint and u has invoked permission
p1, then a request by u to invoke permission p2 must be
denied in order to enforce the constraint.
One possible approach to enforcement is to employ a his-

torical record [5, 14, 16] of all previous invocations of per-
missions and to consider this record whenever a request to
invoke a permission is made. The Chinese Wall model de-
fines the history matrix for precisely this purpose. It is our
belief that approaches of this nature will not scale well to
large-scale applications.
We employ a different approach to the enforcement of

historical constraints by dynamically changing the requests
that can succeed. Hence, in order to enforce a constraint, we
create a blacklist – a dynamic access control structure that
contains constrained requests. When a constrained request
occurs the relevant blacklist is consulted. If the request be-
longs to the blacklist, the request is denied; otherwise, the
request is referred to the role-based reference monitor.
Let (U, {p1, p2} , h) be a constraint. If u successfully in-

vokes permission p1, then a blacklist is created containing
(u, p2). If u now tries to invoke permission p2, then the

47



request fails. However, if u has not already invoked p1,
the request is referred to the reference monitor to estab-
lish whether u has activated a role r such that (p2, r) ∈ PA
and the request can be granted.
We now consider the implementation of blacklists in more

detail. The literature suggests that the most important his-
torical authorization constraints are concerned with users
and permissions. Therefore, we will focus on how such con-
straints can be enforced using blacklists and then comment
more briefly on how other historical constraints can be en-
forced.
We restrict our attention to constraint sets that contain

no more than two elements. Therefore, we can only spec-
ify and enforce standard separation of duty constraints and
exclusion constraints. We will briefly discuss how the en-
forcement model might be extended to accommodate more
complex constraint sets in Section 5.

4.2.1 User-permission constraints
The constraint (U, {p1, p2} , h), defines the constrained

sets {(u, p1), (u, p2)}, where u ∈ U . If user u invokes permis-
sion p1 successfully, any subsequent request to invoke per-
mission p2 must be denied if the constraint is to be enforced.
Therefore, we could include (u, p2) in a blacklist associated
with the constraint monitor. However, we believe a more ef-
ficient approach is to create a list of prohibited permissions
associated with the user u. In other words, we maintain
a blacklist for each user consisting of a set of permissions.
However, note that a set of permissions is nothing more
than a role, so we can view this blacklist as an “anti-role”.
Therefore, each user u is assigned to a role ρu containing
permissions that are currently prohibited for that user.
The work of Sandhu on transaction control expres-

sions [14] assumed it was possible to define a life cycle for
transient objects. (In the case of a cheque object, for exam-
ple, this life cycle begins when the cheque is raised and ends
when the cheque is issued.) That is, certain permissions
are necessarily only invoked a certain number of times. (In
the case of business objects, there will often only be a sin-
gle invocation.) Hence, once a permission ceases to become
meaningful, it can be deleted from any blacklist it belongs
to. (This is analogous to the process by which an object
becomes sanitized in the Chinese Wall model [5]. Hereafter
we will apply this term to permissions.) The process of san-
itizing permissions and deleting them from a blacklist is not
strictly necessary, but it does mean that redundancy in a
blacklist is eliminated and that by minimizing the length of
the blacklist it is easier to check for entries in the blacklist.
For example, let (U, {a1, a2} , h) be an authorization con-

straint, where a1 and a2 are abstract permissions. We will
assume that an object of the type associated with these
abstract permissions is sanitized once both these permis-
sions have been invoked. We also assume that p1 and p2

are the corresponding permissions associated with an ob-
ject of this type. Consider the following sequence of re-
quests: Invoke(u, p1), Invoke(u, p2) and Invoke(v, p2). Ta-
ble 1 shows the effect of this sequence of events on ρu (which
is initially empty) and whether each of the requests succeeds.
Note that the assumptions we have made suggest that a role-
based access control system should also periodically purge
the PA relation of sanitized permissions (since their invoca-
tion no longer has any meaning).

Request Decision ρu

Invoke(u, p1) ✓ {p2}
Invoke(u, p2) ✗ {p2}
Invoke(v, p2) ✓ ∅

Table 1: Enforcing the constraint (U, {p1, p2} , h)

4.2.2 Role-permission constraints
Bertino et al. identified certain situations in work-

flow management systems where constraints of the form
(R, {p1, p2} , h) are required [4]. The interpretation of such
a constraint is that once a user has activated a role r and in-
voked permission p1, then permission p2 cannot be invoked
by any user activating role r. One example might be that
the purchase order clerk role can raise a purchase order but
not sign for receipt of the goods delivered in respect of that
order. This constraint could be used to prevent collusion
amongst purchase order clerks, for example.
In order to implement a blacklist for this constraint, we

would assign negative permissions to the role r. Any at-
tempt to invoke a permission p using role r would be denied
if the corresponding negative permission (which we denote
¬p) were assigned to r (irrespective of whether p was as-
signed to r). In other words, negative permissions always
take precedence over normal permissions.
The standard interpretation of the assignment (¬p, r) in

role-based access control is that ¬p is implicitly assigned to
every r′ ∈ R such that r′ < r [15]. With this interpretation,
we can create an anti-role ¬r for the role r, where r < ¬r,
and assign negative permissions to ¬r, instead of assigning
negative permissions to r.
Bertino et al. also consider constraints based on the struc-

ture of the role hierarchy. Again using the assumption that
negative permissions are inherited downwards, we believe
our model can be used to implement some of the constraints
that have been identified. This is a matter for further re-
search.

4.3 The constraint monitor
We assume the existence of a constraint monitor that is re-

sponsible for enforcing authorization constraints. Each con-
strained request could potentially cause a violation of an au-
thorization constraint. Hence each instance of a constrained
request is passed to the constraint monitor. The constraint
monitor checks whether granting the request would violate
an authorization constraint and takes appropriate action.
Note that it is possible to enforce a static constraint by

considering the configuration of the system. In other words,
we only require blacklists for historical authorization con-
straints. Similarly, it is possible to enforce a dynamic con-
straint by considering the state of the system. For example,
suppose a user attempts to start a session by activating two
roles r and r′, which form a dynamic separation of duty
constraint. Then the security monitor would prevent the
session from starting.
However, it may be more efficient and also facilitate an

object-oriented implementation if we handle all constraints
using blacklists. For example, if (U, {r1, r2} , s) is a con-
straint, u has already been assigned to r1 and a request is
made to assign u to r2, it is likely to be more efficient to
check whether (u, r2) belongs to a blacklist than to check

48



whether (u, r1) ∈ UA.
Hence we envisage that there could be several different

classes of constraint monitors derived from some abstract
constraint monitor class. These could include a role hier-
archy monitor class, a user-role assignment monitor class,
a permission-role assignment monitor class, a session moni-
tor class and monitor classes for specific types (such as the
cheque type). Each monitor will maintain a list of autho-
rization constraints that are relevant to that monitor.

5. EVALUATION AND RELATED WORK

Specification.The specification scheme outlined in this pa-
per has its basis in our set-based approach to conflict of in-
terest policies [7]. It is similar to the model developed by
Jaeger and Tidswell [12], which uses set predicates to define
separation of duty constraints. The scheme we propose is
considerably simpler syntactically than their scheme because
we make no attempt to define the conditions that must be
met for the constraint to be satisfied. Indeed, with the ex-
ception of the work of Simon and Zurko [16], most previous
specification schemes for separation of duty have followed
this approach and used some fragment of first-order logic
as the specification language. We believe that it is well un-
derstood when a separation of duty constraint is violated
and that including the conditions that would cause a viola-
tion simply increases the number of predicates and functions
required to specify the constraints.
However, there are certain separation of duty constraints

that can be specified in RCL 2000 [2] and in Jaeger and
Tidswell’s model that we can not specify using our approach.
Broadly speaking these are constraints where it is not suf-
ficient to iterate over the constraint set for each element of
the scope. Recall that a constraint c = (A,B, x) defines the
family of sets

⋃

a∈A

{a} ×B.

Hence it is not possible to express the following separation
of duty requirement: given two users u and v and two roles
r and s, we do not want either u or v to be assigned to
both roles or u to be assigned one role and v assigned to
the other. Such a constraint is potentially useful in pre-
venting collusion between groups of users. A little thought
shows that such a constraint defines the following con-
strained sets: {(u, r), (u, s)}, {(v, r), (v, s)}, {(u, r), (v, s)}
and {(u, s), (v, r)}. In other words, we could introduce a
fourth parameter in our definition of constraint which de-
termines the “direct product” semantics of the constraint:
that is, whether we should iterate over both the scope and
the constraint set or simply over the constraint set (as we
currently do). (The Jaeger and Tidswell scheme includes
eight different ways of iterating through the various compo-
nents in a constraint.)
We also made an assumption that we did not need to

consider order-dependent historical constraints. However, if
it proved that such an assumption were not valid, it should
be possible to interpret the constraint set as a constraint list.
When an object is instantiated for which such a constraint
is defined, we enter all elements of the list except the head
of the list (the next event that should be executed) into
the appropriate blacklist(s). Once that event occurs, the
next element in the list is removed from the blacklist(s). Of

course, this scheme is only applicable to linear workflows: if
the workflow branches, we need to model a partial order. It
is not immediately obvious how such workflow constraints
could be specified within our scheme.

Enforcement.Dynamically modifying access control struc-
tures in order to reflect previous access requests or execu-
tion paths has received attention in several recent research
papers. Edjlali et al. proposed a dynamic approach to con-
trolling the access rights of mobile code in order to enforce
requirements of the following form: if an application has
accessed a file on the local host system, then the applica-
tion can not open a socket [8]. More recently Abadi and
Fournet have proposed an alternative to the “stack walk”
semantics for virtual machines using the intersection of ac-
cess rights that have been available to each process [1]. We
have used these ideas as a starting point to develop the
idea of a blacklist, which dynamically limits the permissions
available to users (and possibly roles). (The concept of a
blacklist also employs the concept of negative permissions,
which have received little attention since their introduction
to the role-based access control literature [15].)
The enforcement model we define in this paper can only

enforce constraints in which the constraint set has no more
than two elements. We do this because it is not possible
to implement blacklists with a simple semantics otherwise.
To see this, consider the constraint (U, {p1, p2, p3} , h) and
assume that none of the three permissions have been in-
voked by user u. Once u invokes the permission p1, say,
which of the remaining two permissions should be entered
in the blacklist? Clearly, we could enter both p2 and p3 into
the blacklist ρu, but this would be too restrictive. Specifi-
cally, the semantics of constraint enforcement become that
no more than one constrained request in a constrained set
is permitted to succeed.
The alternative is to keep a historical record of all access

requests and to enter either p2 or p3 at some point in the fu-
ture. We do not want to keep a historical record because we
believe that such an approach will have unacceptable per-
formance overheads. Therefore, we have chosen to impose
this upper bound on the cardinality of the constraint set in
historical authorization contraints. It should be noted that
most existing approaches to separation of duty only consider
constraint sets with precisely two elements, the exceptions
being the RCL 2000 specification language [2] and the work
of Simon and Zurko [16].
It may be possible to enforce such constraints by entering

the remaining set of permissions {p1, p2} into ρu. If u now
invokes permission p2 (say), it is deleted from the blacklist,
leaving a singleton set {p3}. A subsequent request to invoke
p3 would then fail.

6. SUMMARY AND FUTURE WORK
We have developed a simple set-based specification

scheme for authorization constraints in role-based access
control systems. We have also suggested an enforcement
model for a restricted subset of this scheme. To the author’s
knowledge, this is the first attempt at defining a specifica-
tion and enforcement model for authorization constraints
since the work by Simon and Zurko [16]. We believe that our
specification is easier to understand than their scheme and
that our enforcement model, which does not rely on main-
taining a historical record of all previous system activity, is

49



likely to have lower performance overheads, particularly for
large-scale applications.
There are several interesting directions for future work,

some of which have been alluded to in the body of the paper.
We would like to investigate whether constraint sets with
an arbitrary number of elements can be enforced in a simple
way. We would also like to find an intuitive scheme for
defining different combinations of elements in the constraint
scope and the constraint set in order to increase the range
of constraints that our scheme can support.
The most ambitious goal is to develop abstract Java

classes, constraint and monitor, that implement our con-
straint specification and enforcement schemes. The ulti-
mate objective being to develop a generic middleware au-
thorization constraint engine that can be instantiated by
application developers and systems administrators to sup-
port enterprise-wide heterogeneous constraint authorization
policies.

7. REFERENCES
[1] Abadi, M., and Fournet, C. Access control based

on execution history. In Proceedings of 10th Annual
Network and Distributed System Security Symposium
(2003). To appear.

[2] Ahn, G.-J., and Sandhu, R. Role-based
authorization constraints specification. ACM
Transactions on Information and System Security 3, 4
(2000), 207–226.

[3] Bell, D., and LaPadula, L. Secure computer
systems: Unified exposition and Multics
interpretation. Tech. Rep. MTR-2997, Mitre
Corporation, Bedford, Massachusetts, 1976.

[4] Bertino, E., Ferrari, E., and Atluri, V. The
specification and enforcement of authorization
constraints in workflow management systems. ACM
Transactions on Information and System Security 2, 1
(1999), 65–104.

[5] Brewer, D., and Nash, M. The Chinese Wall
security policy. In Proceedings of 1989 IEEE
Symposium on Security and Privacy (Oakland,
California, 1989), IEEE Computer Society Press,
pp. 206–214.

[6] Clark, D., and Wilson, D. A comparison of
commercial and military computer security policies. In
Proceedings of 1987 IEEE Symposium on Security and
Privacy (Oakland, California, 1987), pp. 184–194.

[7] Crampton, J., and Loizou, G. Structural
complexity of conflict of interest policies. Tech. Rep.
BBKCS-00-07, Birkbeck College, University of
London, 2000.

[8] Edjlali, G., Acharya, A., and Chaudhary, V.

History-based access control for mobile code. In
Proceedings of Fifth ACM Conference on Computer
and Communications Security (1998), pp. 38–48.

[9] Ferraiolo, D., Sandhu, R., Gavrila, S., Kuhn,

D., and Chandramouli, R. Proposed NIST standard
for role-based access control. ACM Transactions on
Information and System Security 4, 3 (2001), 224–274.

[10] Gavrila, S., and Barkley, J. Formal specification
for role based access control user/role and role/role
relationship management. In Proceedings of Third
ACM Workshop on Role-Based Access Control
(Fairfax, Virginia, 1998), pp. 81–90.

[11] Gligor, V., Gavrila, S., and Ferraiolo, D. On
the formal definition of separation-of-duty policies and
their composition. In Proceedings of 1998 IEEE
Symposium on Research in Security and Privacy
(Oakland, California, 1998), pp. 172–183.

[12] Jaeger, T., and Tidswell, J. Practical safety in
flexible access control models. ACM Transactions on
Information and System Security 4, 2 (2001), 158–190.

[13] Nyanchama, M., and Osborn, S. The role graph
model and conflict of interest. ACM Transactions on
Information and System Security 2, 1 (1999), 3–33.

[14] Sandhu, R. Transaction control expressions for
separation of duties. In Proceedings of 4th Aerospace
Computer Security Conference (Orlando, Florida,
1988), pp. 282–286.

[15] Sandhu, R., Coyne, E., Feinstein, H., and

Youman, C. Role-based access control models. IEEE
Computer 29, 2 (1996), 38–47.

[16] Simon, R., and Zurko, M. Separation of duty in
role-based environments. In Proceedings of 10th IEEE
Computer Security Foundations Workshop (Rockport,
Massachusetts, 1997), pp. 183–194.

50


