
Operating System Enhancements to
Prevent the Misuse of System Calls

Massimo Bernaschi
IAC-CNR

Viale del Policlinico, 137
00161 Rome, Italy

massimo@iac.rm.cnr.it

Emanuele Gabrielli
IAC-CNR

Viale del Policlinico, 137
00161 Rome, Italy

gabrielli@iac.rm.cnr.it

Luigi V. Mancini
Dip. Scienze Informazione

Univ. di Roma “La Sapienza”
00198 Rome, Italy

lv.mancini@dsi.uniroma1.it

ABSTRACT
We propose a cost-e�ective mechanism, to control the invo-
cation of critical, from the security viewpoint, system calls.
The integration into existing UNIX operating systems is car-
ried out by instrumenting the code of the system calls so that
the system call itself once invoked checks to see whether the
invoking process and the argument values passed comply
with the rules held in an access control database.
This method provides simple interception of both system
calls and their argument values and do not require changes in
the kernel data structures and algorithms. All kernel mod-
i�cations are transparent to the application processes that
can continue to work correctly without needing changes of
the source code or re-compilation. A working prototype has
been implemented inside the kernel of the Linux operating
system, the prototype is able to detect and block also bu�er
overow based attacks.

Keywords
access control database, bu�er overow based attacks, iso-
lation, Linux, system calls interception

1. INTRODUCTION
Most of the conventional techniques for intrusion detec-

tion are based on some form of analysis of audit data and
system log �les [20]. The idea is to spot anomalies (i.e. a
root login during system's administrator vacations) and to
check periodically the whole system for unexpected changes
in the con�guration (i.e., new users with administrative priv-
ileges). Another common practice is to perform periodically
a comparison between the properties (size, access mode, ...)
of system �les and a reference list. This procedure is aimed
to spot Trojan horses, that is programs, left by an intruder,
which look harmless but allow her/him to take full control
of the system. The main advantage of these methods is
of being non intrusive, i.e. they do not require changes to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’00, Athens, Greece
Copyright 2000 ACM 1-58113-203-4/00/0011 ..$5.00

the Operating System (OS) or system commands. However,
they cannot be considered as procedures of intrusion pre-
vention since, most of the times, the detection is completed
after the attack succeeds.
We believe that immediate detection of security rules viola-
tions can be achieved by monitoring the system calls made
by processes, and blocking any malicious invocations of sys-
tem calls from being completed. Hereafter we propose a
mechanism for system calls interception at the OS kernel
level. Our method requires minimal additions to the ker-
nel code and no change to the syntax and semantics of the
system calls. For UNIX-like OS's whose source code is avail-
able, we propose to \instrument" the system calls so that
the system call itself once invoked checks whether the in-
voking process and the value of the arguments comply with
the rules kept in a small access control database within the
kernel. Common penetration techniques that involve trick-
ing the system into running the intruder's own program in
privileged mode are blocked by this approach.
A detailed analysis of the system calls can simplify the

design and implementation of this OS reference monitor by
identifying the system calls dangerous for the system secu-
rity and by reducing the cost of system calls monitoring. As
an example of this methodology, we have designed and im-
plemented a prototype for monitoring system calls which
blocks bu�er overow attacks before they can complete.
Note that these are just examples of possible attacks, in-
deed our OS reference monitor is intended to protect against
any technique that allows an attacker to hijack the control
of a privileged process. In particular, our OS based solu-
tion is e�ective against bu�er overow attacks regardless of
the bu�er location whereas most of the proposed solutions
address just the case of stack smashing (see Section 5). In
addition, our solution allows several response options to be
taken into consideration to handle the attack. This is an ad-
ditional argument in favor of reference monitoring of system
calls, indeed the basic OS cannot stop bu�er overow while
this attack is just one of many attacks that our approach
protects against.
The key issues addressed by this work can be summarized

as follows.
1. detect illegal invocation of critical system calls before

they complete so to prevent attackers to hijack the control
of any privileged process.
2. make a case for reference monitoring of system calls;
3. allow an eÆcient check of the argument values of the sys-
tem calls;

174

System Call Request

Audit File

REFERENCE

MONITOR

Accepted System Call

System Call Denial

Access Control Database

Figure 1: Reference Monitor

4. implement a secure OS by means of lightweight exten-
sions of the kernel, in particular without requiring changes
in existing data structures and algorithms;
5. support, thanks to the immediate detection of possible at-
tacks, other extensions of the OS to con�ne and tolerate in-
trusive processes running together with legitimate processes.
This could allow a safe analysis of the intrusive processes
while the intrusion is in progress so to determine potential
collusions among intruders;
The rest of the paper is organized as follows. Section 2

overviews the main ideas behind our approach. Section 3 de-
scribes the enhancements needed to detect bu�er overow
attacks before they can complete. Section 4 gives details
of the new operations and data structures used in the cur-
rent implementation in the Linux Kernel. Section 5 reviews
related approaches presented in the literature. Section 6
concludes the paper and discusses future activities.

2. OVERVIEW OF THE APPROACH
Our design is based on the reference monitor concept de-

scribed in [2]. The only path the processes can take to access
the system calls is through the reference monitor shown in
Figure 1. The reference monitor consists of two main func-
tions: the reference function and the authorization func-
tion. The reference function is used to make decisions about
whether to permit or deny a system call request based on
information kept in an Access Control Database (ACD). The
access control database conceptually contains entries or ac-
cess control rules in the form (process, system call, access
mode). The access control rules in the ACD capture con-
ditions on both the system calls and the values of their ar-
guments. For instance, an access control rule of the execve
system call could specify in the access mode �eld the list of
the executable �les that the invoking process can execute,
that is the �les that the invoking process can legally pass
as argument to execve. Such feature prevents a privileged
process not properly registered from starting \dangerous"
programs like an interactive shell. Note that the tests on
the �le-parameter of a system call will be based on detailed
information that include the i-node number of the �le, and

are not based simply on the �le name. As explained in
Section 4, this is because tests based on �le name can be
bypassed by renaming the �le-parameter.
The ACD is not part of the reference monitor, but all mod-
i�cations to such database are controlled by the reference
monitor by means of its second component: the authoriza-
tion function. This function is used to monitor changes to
individual access control rules.
One of the fundamental principles of a reference monitor is
its completeness, meaning that all accesses must be medi-
ated by the monitor. Unfortunately, the implementation at
system call entry point level of this principle has a high
cost which is constant regardless of the system call [17].
This overhead can be reduced by identifying a subset of
system calls to be monitored which gives a complete protec-
tion against attacks. In other words, the system cannot be
attacked by executing unprotected system calls.
Following this approach, we have built a prototype which
detects and prevents bu�er overow based attacks before
they can complete. The prototype implements the reference
monitor functions and in particular the system calls inter-
ception inside the kernel of the Linux OS.
By means of checks made by the OS kernel before the system
call is completed, one should be able to prevent any possible
side e�ect of system calls that intruders currently exploit for
their attacks.
It is worth noting that the checks made inside the system
calls do not require changes in existing kernel data struc-
tures and algorithms. Hence all the kernel modi�cations are
transparent to the application processes that continue to
work correctly requiring neither changes of the source code
nor re-compilation.

3. KERNEL ENHANCEMENTS
This section describes the enhancements of the Linux ker-

nel which block any attempt to hijack the control of a priv-
ileged process. In particular, these enhancements prevent
bu�er overows attacks from being dangerous for the sys-
tem security.
We address the attacks by which an intruder tries to gain
immediate access to the system as privileged user (i.e. root).
According to this choice, the prototype monitors those sys-
tem calls invoked by root processes which may compromise
the security and integrity of the operating system. Of course
in a system that maintains user sensitive information, a
bu�er overow attack should never read or modify user in-
formation too.
Given these assumptions, during the design phase, the com-
plete set of system calls has been analyzed to identify the
system calls that might be invoked during a dangerous bu�er
overow attack. The result of the analysis, summarized in
section 3.2, shows that by adding access control tests to a
small number of system calls, the protection against bu�er
overow is complete and can not be bypassed by executing
unprotected system calls. This reduces the cost of system
call interception since the invocation of most system calls
is not checked, and thus improves the performance of the
present prototype.

175

3.1 The buffer overflow attack
The lack of array bounds checking in C makes possible to

overow a memory bu�er beyond its boundaries. By means
of widely known techniques [1, 15, 8], a malicious user may
corrupt one or more memory bu�ers, belonging to the stack
or data segment, in such a way that, typically on return from
a function call, a di�erent piece of code, \injected" by the
attacker, is executed by the awed C program. Obviously
the process corresponding to the buggy program maintains
its \status" including special privileges (if any). As a con-
sequence, if the technique is successfully applied to a privi-
leged process and the fake code is used, for instance, to start
the execution of an interactive shell, the attacker gains the
access to a privileged shell. System software components,
that is commands, daemons, libraries written in C rarely
perform all the necessary checks before invoking functions
like sprintf or strcpy that may result in a bu�er over-
ow. This \feature" makes them an obvious target of bu�er
overow based attacks specially if these components gener-
ate processes running with administrator privileges. So we
must prevent any root process from executing unexpected
system calls if it undergoes a bu�er overow based attack.
For the purpose of our discussion, a root process may belong
to one of the following three categories:
interactive. This is a generic process started by the system

superuser. Both the User IDenti�er (UID) and the E�ective
User IDenti�er (EUID) are equal to 0. No additional threat
is generated by such process since the user who starts it has
already the full control of the system;
background. This is, usually, either a daemon process started
at boot time or a process started periodically by the cron
daemon on root behalf.
setuid. For this kind of process the pair of user identi�ers
(UID, EUID) has values UID> 0 and EUID=0. So a process
can be identi�ed as setuid to root by means of the following
simple macro

#define
IS_SETUID_TO_ROOT(proc) !((proc)->euid)&&(proc)->uid

On speci�c OS's other information may be more suitable to
identify a setuid process. For example, in the AIXOS a good
candidate appears to be the LOGIN UID which is assigned
during the initial user authentication and never modi�ed.
Our choice is motivated by the consideration that the pair
(UID,EUID) is present in all Unix avors. This should ease
the extension of our work to other Unix platforms.
In the rest of the paper we will consider, for the sake of
simplicity, just the last class (the setuid processes). The ex-
tension to the background root processes should be apparent
once we describe how such processes can be identi�ed within
the kernel. This is done in the following subsection.

3.1.1 Background root programs
On a typical UNIX system there are always root programs

running in \background". Most of the times, the system
administrator neither start them directly (i.e. during an in-
teractive session) nor control their execution, so such \unat-
tended" programs are a preferred target of bu�er overow
based attacks.
According to [19] it is possible to group them as follows:
1. Daemons processes originated directly by the system

initialization scripts. Network servers like the inetd super-
server, Web server, mail server (e.g., sendmail) are often

Table 1: System calls categories

group functionality group functionality

I File system, devices V Communication
II Process management VI Time and timers
III Module management VII System info
IV Memory management VIII Reserved

IX Unimplemented

Table 2: Threat level classi�cation
threat level description

1 Allows to get full control of the system
2 Used for a denial of service attack
3 Used for subverting the invoking process
4 It is harmless

started in this way. Another example is the syslogd dae-
mon.
2. Network servers started by the inetd super-server to ful�ll
requests for services like remote access (telnet), �le transfer
(FTP) and so on.
3. Programs executed on a regular basis by the cron dae-
mon. The cron daemon itself is started at boot time (i.e. it
belongs to group 1).
4. Programs executed just once in the future by means of the
at command. Actually these programs can be considered as
a special case of the previous group.
5. Programs started in background during an interactive ses-
sions (i.e. with a & at the end of the command line). This is
done mostly for testing purposes or for restarting a daemon
that was terminated for some reason.
These programs in general do not have a controlling ter-

minal. To tell them apart from root programs running in
interactive mode, we resort to the following macro:

#define IS_A_ROOT_DAEMON(proc)
!((proc)->euid)&&((proc)->tty==NULL)

Here, the �rst logical clause checks whether the process
runs with root privileges (EUID=0) whereas the second one
checks whether the process has a controlling terminal. Fol-
lowing [19] and [7] we assume that a daemon never needs a
control terminal. As a consequence we block any attempt to
re-acquire a control terminal. Note that a daemon can still
open a terminal device (e.g. /dev/tty or /dev/console) to
log error messages.

3.2 System calls analysis
The analysis presented in this section identi�es which sys-

tem calls may be dangerous if invoked in a bu�er overow
based attack.
The system calls available in Linux 2.2 have been grouped
in categories according to their functionality as reported in
table 1. In addition, each primitive has been classi�ed ac-
cording to the level of threat which is de�ned in table 2. The
details of this classi�cation are summarized in table 3 and
4. In the present study we face the issues raised by system
calls classi�ed as threat level 1.
For di�erent reasons no system call in the groups IV-IX can

176

Table 3: System calls with threat level 1 and 2
threat system call group system call group system call group
1 open I link I unlink I
1 chmod I lchown I rename I
1 mount I symlink I fchmod I
1 fchown I chown I execve II
1 setuid II setgid II setreuid II
1 setregid II setgroups II setfsuid II
1 setfsgid II setresuid II setresgid II
1 create module III
2 creat I mknod I umount I
2 mkdir I rmdir I umount2 I
2 ioctl I dup2 I truncate I
2 ftruncate I quotactl I afs syscall I
2 ock I nfsservctl I fork II
2 brk II kill II setrlimit II
2 reboot II setpriority II ioperm II
2 iopl II vm86old II clone II
2 modify ldt II adjtimex II sched setparam II
2 vfork II vhangup II sched setscheduler II
2 vm86 II delete module III swapon IV
2 swapo� IV mlock IV mlockall IV
2 stime V settimeofday V nice V
2 socketcall VI ipc VI sethostname VII
2 syslog VII setdomainname VII sysctl VII

be used to gain the control of the system. For instance sys-
tem calls in group IX return immediately the error ENOSYS,
whereas primitives in group VIII can not be invoked by a
generic user process (even if it is a privileged process).
As to the system calls in group III, a subverted process may
use them for loading a malicious module (e.g. a module
that is not listed in /lib/modules). Our investigation shows
that create module is the only primitive which reaches the
threat level 1 since no module can be activated without in-
voking create module �rst.
The largest set (78) of system calls is related to process
management. Among these primitives, ten reach the high-
est level of danger for the system security. The execve can
be used to start a root shell. The other nine primitives, set
user and group identi�ers. It is worth noting that capset
allows a process only to restrict its capabilities, so it belongs
to class 3.
The ten system calls related to the �le system classi�ed as
threat level 1 require special attention. It is apparent that

chmod(``/etc/passwd'',0666),

chown(``/etc/passwd'',intruder,intruder_group)
rename(``/tmp/passwd'',``/etc/passwd'')

compromise the OS authentication mechanisms. However,
it is necessary to consider chains of system calls as well. For
instance, chown and chmod primitives can be used in a two-
steps procedure to create a setuid shell whereas the following
sequence:

unlink(``/etc/passwd'')
link(``/tmp/passwd'',``/etc/passwd'')

produces the same result of the rename primitive.
Moreover, with a bu�er overow, it is possible to execute
code that directly remove the root password from /etc/passwd

(and/or /etc/shadow), add to the same �le a new user with
UID=0 or add a fake .rhosts �le to the root home directory.
An intruder having access to a CD-ROM connected to the
\victim" system may build a �lesystem which contains a
fake /bin with Trojan Horse programs. Then, by means of
the following invocation
mount(``/dev/hdb'',``/bin'',``ext2'',MS MSG VAL,NULL)

the intruder may cover the legitimate /bin directory with his
fake /bin.
Although less common, these exploits are, by no means, less
dangerous than those based on the \classic" shell-code. Most
attacks that involve a �le require at least two system calls.
A �rst one to open the �le and a second one to modify it.
In this case, in accordance with [12] we assume that it is
necessary to monitor just the open primitive. That is the
reason why the write system call is not considered threat
level 1. In building an ACD for the open a number of di�er-
ent situations must be considered. Several setuid programs
or root daemons may open, for good reasons, critical �les.
For the time being we are going to monitor just the access
to �les in write-mode. At times it may be necessary to let
root programs write any �le in speci�c directories de�ned
in the ACD. This is the case of directories like /var/mail or
/var/spool/mqueue used by sendmail. For directories like
/etc a �ne-grain control is required. So, a �le belonging to
/etc may be modi�ed just in case its identi�ers (inode and
device number) are explicitly inserted in the ACD.
A detailed study of setuid and daemon programs has been
carried out to de�ne which directories and �les must be in-
cluded in the ACD. This has been realized by both source
code inspection and analysis of the results produced by the
strace command which intercepts and records the system
calls invoked by a process. Table 5 summarizes the results
of the analysis.

177

Table 4: System calls with threat level 3 and 4
threat system call group system call group system call group

3 read I write I close I
3 chdir I lseek I dup I
3 fcntl I umask I chroot I
3 select I fsync I fchdir I
3 llseek I newselect I readv I
3 writev I poll I pread I
3 pwrite I send�le I putpmsg I
3 utime I exit II waitpid II
3 ptrace II signal II setpgid II
3 setsid II sigaction II ssetmask II
3 sigsuspend II sigpending II uselib II
3 wait4 II sigreturn II sigprocmask II
3 personality II rt sigreturn II rt sigaction II
3 rt sigprocmask II rt sigpending II rt sigtimedwait II
3 rt sigqueueinfo II rt sigsuspend II capset II
3 sched yield II prctl II mmap IV
3 munmap IV mprotect IV msync IV
3 munlock IV munlockall IV mremap IV
3 pause V setitimer V nanosleep V
4 oldstat I oldfstat I access I
4 sync I pipe I ustat I
4 oldlstat I readlink I readdir I
4 statfs I fstatfs I stat I
4 lstat I fstat I olduname I
4 bdush I sysfs I getdents I
4 fdatasync I getpmsg I getpid II
4 getuid II getgid II geteuid II
4 getegid II acct II getppid II
4 getpgrp II sgetmask II getrlimit II
4 getrusage II getgroups II getpriority II
4 sched getscheduler II getsid II getcwd II
4 sched getparam II capget II getpgid II
4 sched get priority max II getresgid II getresuid II
4 sched get priority min II get kernel syms III init module III
4 sched rr get interval II times V time V
4 query module III gettimeofday V getitimer V
4 sysinfo VII uname VII idle VIII
4 break IX ftime IX mpx IX
4 stty IX prof IX ulimit IX
4 gtty IX lock IX pro�l IX

Table 5: Threat level 1 system calls
system calls dangerous parameter

chmod, fchmod a system �le or a directory
chown, fchown, lchown a system �le or a directory
execve an executable �le
mount on a system directory
rename, open a system �le
link, symlink, unlink a system �le
setuid, setresuid, setfsuid, setreuid UID set to zero
setgroups, setgid, setfsgid, setresgid, setregid GID set to zero
create module modules not in /lib/modules

178

static char rpasswd[LEN_PWD]; /* setuid_acd */

/* execve_acd */
typedef struct setuid_proc_id {
char comm[16];
unsigned long count;

} suidpid_t;
typedef struct setuid_program {

suidpid_t suidp_id;
suidp_t * next; /* next program */

} suidp_t;
typedef struct exe_file_id {

__kernel_dev_t device; /* device number */
unsigned long inode; /* inode number */
__kernel_off_t size; /* size */
__kernel_time_t modif; /* modification time */

} efid_t;
typedef struct executable_file {

efid_t efid; /* info for file identification */
int prog_nr;
/* number of programs that can invoke this exe */
suidp_t *programs; /* list authorized programs */

} efile_t;
typedef struct executable_file_list {

efile_t lst[NR_EXE];
unsigned int total;
/* total number of exe in the list */

} eflst_t;

Figure 2: The layout of some of the access control
data structures

4. IMPLEMENTATION
This section presents the current implementation of our

control mechanism. The description includes the authoriza-
tion functions, the data structures added to the OS kernel
which implement the Access Control Database (ACD); the
new system call to read, write and update the ACD and the
reference functions. Some practical information about the
installation, the usage and the performance are included as
well.

4.1 The authorization functions
The Access Control Database contains a section for each

system call under the control of the Reference Monitor. For
instance, the working prototype maintains a setuid acd
data structure to check the access to the setuid system call
and an execve acd data structure to check the access to the
execve system call. The layout of such data structures is
shown in Figure 2. The setuid acd contains just the string
rpasswd which keeps in the kernel memory the encrypted
root password. This is used for a stronger authentication of
a setuid process that invokes the setuid system call.
The execve acd is composed by two arrays of eflst t struc-
tures:
admitted: an executable �le F has an entry in this structure
if, at least, one setuid program needs to execute F via an
execve. The information stored in the entry is the list of all
setuid programs which may invoke F .
failure: this list keeps a log of the unauthorized attempts
(that is, not explicitly allowed by the admitted data struc-
ture) of invoking execve by any setuid process.
Figure 3 shows the admitted data structure which is an

array where each element refers to an executable �le and
points to a list of setuid programs that can execute that �le.
The failure data structure which is not shown in the �g-

Comm[16]

count

...
...

...prog_nrefid Suidp_id

device inode

size modif programs

Figure 3: The layout of the admitted data structure

ure, is similar to the admitted data structure, but it grows
dynamically as long as the kernel intercepts unauthorized
invocations by setuid programs. Currently it is kept just for
auditing purposes.
Each element of the admitted data structure contains three
�elds: efid, prog nr and programs.
efid:

this �eld identi�es the executable �le F . The information
stored in efid are: the device number of the �le system to
which �le F belongs (device), the inode number of �le F

(inode), the length in byte of �le F (size), the last modi�-
cation time of �le F (modif).
The pair of information device and inode identi�es �le F
in a unique way within the system whereas the information
size and modif allow to detect unauthorized modi�cations
of the �le contents.
prog nr:
this �eld indicates the length of the programs list, that is
the number of setuid programs that can invoke �le F ;
programs:
is a pointer to the list of setuid programs which can execute
�le F . Each element, named suidp id, of the list contains
two �elds: comm and count. The string of characters comm
keeps a copy of the name of the setuid program as it ap-
pears in the comm �eld of the process table. The �eld count
is used for statistics and indicates the number of invocations
by process comm of �le F .
In the rest of this section, we describe sys setuid aclm, a

new system call that can be invoked only by interactive root
processes with EUID=0 and UID=0. These constraints are
required to prevent a subverted setuid or root daemon from
tampering the ACD. The purpose of sys setuid aclm is to
allow interactions with the kernel for reading and modifying
the information kept in the ACD.
Since distinct root processes can access the ACD, conicts
can arise. Hence our new primitive enforces a concurrency
control mechanism among the conicting processes. In par-
ticular, a lock variable called write pid is used to implement
the mutual exclusion. To avoid race conditions on write pid

itself, this variable must be checked and updated atomically.
This has been achieved by means of a kernel function called
atomic access which resorts to Intel Architecture instruc-
tion for atomic exchange: xchg.
Actually, the sys setuid aclm system call is a common front
end for six di�erent operations which are briey described
below:

179

PUT (exe file, suid prog, list) adds the pair (exe file,

suid prog) in the speci�ed list of the ACD.
GET (exe file, suid prog, param) reads the pair (param
! file nr, param ! prog nr) from param ! list.
PUTHEADERACL(header acl) stores the header of the ACD in
kernel memory space. It is useful when the system is started
the �rst time after the patch installation.
GETHEADERACL(local header acl) retrieves the header of
the ACD from kernel space and stores it in the local variable
local header acl.
DELETE(exe file, suid prog, list) removes the pair
(exe file, suid prog) from the speci�ed list. If exe file
is NULL then it removes all pairs of the form (*, suid prog),
that is it denies the process suid prog from executing any
other �le;
PUT PWD(param) writes the password param!passwd in ker-
nel memory space. It deletes temporary copies of the pass-
word both in the kernel space and in the user space.
The system administrator can manage the ACD resorting to
the sys setuid aclm system call through a new command,
named aclmng.

4.2 The reference functions
This section presents some examples of the extensions in-

troduced to control the system calls de�ned in section 3.2
as threat level 1.
execve:

the reference function is invoked at the beginning of this sys-
tem call after the �le has been opened. The check rootproc()
function authenticates the root process that invokes execve
and checks in the Access Control Database whether the call-
ing process has the right to execute the program whose name
is passed as �rst parameter. The system call execution is de-
nied when check rootproc returns one of the two following
values:
EXENA: the calling process is not authorized to execute

the requested program. That is, the program name is not
present at all in the Access Control Database or the calling
program is not listed in the programs �eld of the admitted
list in the Access Control Database.
EFNA: the calling process is authorized to execute the re-
quested program, but the �le is not authenticated, e.g. the
modi�cation time or the size do not match.
In the check rootproc function, if the calling process does

not run with root privileges (EUID=0), then no further
check is performed and the execve proceeds normally. Oth-
erwise, the service is provided if and only if the permission
is explicitly contained in the Access Control Database.
setuid:

For the setuid system call, the authentication of the root
processes is the same as in the execve case. A user running
a setuid program which attempts to invoke setuid(0) to as-
sign UID=0 to itself, is enforced to type the root password.
The password keyed is then compared with the encrypted
copy kept in the Access Control Database. In case of a pass-
word mismatch the setuid(0) invocation is denied. An ex-
ample of program we expect to monitor with this mechanism
is su, a setuid program which runs a shell with substitute
user (and group) ID.
chmod:

An additional check is performed on the filename argument
if chmod is invoked by a background or setuid process. If
filename refers to a regular �le or a directory, the opera-

tion is denied. This means that the operation is allowed if
filename refers to a device registered in the ACD. Impor-
tant programs, like the X server (which is a backgroud root
process) would not work without this distinction.
chown:

Similar considerations made for chmod apply to chown, where
a check has been added to prevent a background or setuid
process from modifying the owner of any regular �le or di-
rectory.

4.3 Installation and day-by-day operations
The software prototype is available from [5] and it is com-

posed of three parts:
1. a kernel patch. The patch has been developed and

tested with the version 2.2.12-20 of the Linux kernel. Since
it is basically a set of additions to the existing code for the
system calls (there are neither changes nor deletions), we do
not expect major problems in porting it to other (newer)
versions of the kernel.
2. the new command aclmng (which has been described in
section 4.1).
3. a modi�ed version of the chmod command. The only dif-
ference with the original program is that chmod accepts a
new option -p. When chmod is used to add the setuid func-
tionality (mode +s) to a program, say foo, owned by root,
the - -p option allows to specify the list of the programs that
foo will be allowed to exec. For instance:
chmod +s -p /program1:... :/programN foo
allows the setuid program foo to execute any of program1,...
programN (the execution of any other program is, by default,
forbidden). What the modi�ed chmod does is to invoke the
sys setuid aclm system call to add the necessary informa-
tion in the ACD.
The system administrator's duties are limited to run the
new version of the chmod command. Neither re-compilation
nor code inspection is required.

4.4 Performance
We expect a very limited degradation of the global per-

formance for a system running our enhanced kernel. There
are a number of reasons for this forecast:
1. When a process runs in user mode, there is no di�er-

ence at all with a standard system since all new checks are
con�ned in the kernel.
2. Very few primitives include the additional checks (approx-
imately 10% of the total number of system calls).
3. Only a limited subset of the processes execute all the
checks. A generic user process which invokes a threat level
1 system call undergoes just the following controls within
the instrumented system calls:
if(IS SETUID TO ROOT(current) ||

IS A ROOT DAEMON(current)) f ...g
So if the process is neither a root daemon nor setuid to root,
it does no more than a couple of logical tests (note that the
two conditions are evaluated separately just for the sake of
code readability).
4. With the exception of the open primitive, it is unlikely
that a setuid or daemon process invokes any of the instru-
mented system calls more than once during its lifetime.
5. The checks do not require any access to \out of core"
data, all the info is resident in the kernel memory.

180

To assess these considerations, a set of experiments has
been executed. We have selected four applications and ran
them on the same system (a 330 MHz Pentium II with 128
MB of RAM) with a standard Linux kernel (version 2.2.12)
and the same kernel \patched" to include the additional
checks. Each test has been repeated 40 times. The applica-
tions have been used as follows:
sendmail: by means of a simple shell script three mes-

sages of di�erent size (1 KB, 30 KB and 1 MB) have been
sent to a local user;
lpr: eight �les of di�erent size (from 1 KB to 10 MB) have
been sent to a local printer;
rsync: a directory with 1440 �les (total size about 10 MB)
has been synchronized with a di�erent path (on the same
system);
X server: by means of the x11perf program a 300 � 300
trapezoid is �lled with a 8� 8 stipple.
Table 6 reports the average execution time (in seconds)

and the standard deviation of 40 runs. It is apparent look-
ing at the results that the di�erence between the average
execution times is comparable with the standard deviation
of the multiple runs. This suggests that the actual impact
of the patches on the global system performance is, for all
practical purposes, negligible.

5. RELATED WORK
Bu�er overow based attacks have been around, at least,

since 80's (the Internet Worm exploited a bu�er overow
in the fingerd daemon) and many solutions have been pro-
posed in the past to solve the problem.
Some UNIX distributions (BSDI, Open-BSD) have modi�ed
the linker to produce warning messages when a program uses
dangerous functions. This approach implies many \false
positive" alarms since the use of dangerous functions are
not all incorrect whereas overows occur not only in stan-
dard libraries.
Marking both data and stack regions as \non-executable"
would catch most \cut and paste" exploits. A non-executable
stack is readily implemented [18] since it introduces just mi-
nor side e�ects in most UNIX variations (e.g., Linux places
code for signal delivery onto the process's stack). Note that
there is no performance penalty and existing programs re-
quire neither changes nor re-compilation. The situation is
not so simple for the data region. It is not possible to mark
it as non-executable without introducing major compatibil-
ity problems. Even if this could be solved, there is still the
problem of attacks which instead of introducing new code,
corrupt code pointers. This technique allows to execute dan-
gerous instructions which are already part either of the pro-
gram or of its libraries [22].
There are both commercial [13] and public domain [14] so-
lutions which add array bounds checking capabilities to C
programs. These packages can be considered as good de-
bugging tools but, in a production environment, their use is
not feasible since the performance penalty is barely accept-
able (programs undergo a slowdown of about one order of
magnitude).
Recently, two compiler techniques have been proposed for
introducing in the executable code \lightweight" checks on
the integrity of functions' return address.
StackGuard [10] detects and defeats stack smashing attacks
by protecting the return address on the stack from being
altered. StackGuard places a \canary" word next to the re-

turn address when a function is called. If the canary word
has been altered when the function returns, then a stack
smashing attack has been attempted, and the program re-
sponds by emitting an intruder alert into syslog, and then
halts.
To be e�ective, the attacker must not be able to "spoof" the
canary word by embedding the value for the canary word in
the attack string. StackGuard o�ers a range of techniques
to prevent canary spoo�ng:
Random canaries: the canary word value is chosen at ran-

dom at the time the program executes. Thus the attacker
cannot learn the canary value prior to the program start by
searching the executable image.
Null canary: the canary word is \null", i.e. 0x00000000.
Since most string operations that are exploited by stack
smashing attacks terminate on null, the attacker cannot eas-
ily spoof a series of nulls into the middle of the string.
Terminator canary: not all string operations are termi-
nated by null, e.g. gets() terminates on new line or end-of-
�le (represented as -1). The terminator canary is a combina-
tion of Null, CR, LF, and -1 (0xFF) which should terminate
most string operations.
StackGuard is implemented as a small patch to the gcc

code generator, speci�cally the function prolog() and func-
tion epilog() routines. function prolog() has been enhanced
to lay down canaries on the stack when functions start, and
function epilog() checks canary integrity when the function
exits. Any attempt at corrupting the return address is thus
detected before the function returns.
The Stack Shield [21] protection system copies the return
address in an unoverowable location (the beginning of the
data segment) on function prolog and checks if the two val-
ues are di�erent before the function returns. If the two val-
ues are di�erent the return address has been modi�ed so
Stack Shield terminates the program or tries to let the pro-
gram run ignoring the attack (risking at maximum a pro-
gram crash). Stack Shield works as an assembler �le proces-
sor and is supported by gcc/g++ front ends to automatize
the compilation. No code change or other special operations
are required.
StackGuard and StackShield o�er many nice features: min-
imum performance penalty, no change in existing code, no
constraint is imposed on new code. The major limitation
is that they protect against bu�er overows in the stack.
Unfortunately, heap overows are less common but, by no
means, less dangerous than stack overows [8]. The solution
we propose is e�ective regardless of bu�er location. More-
over it has shown very recently that it is possible to exploit
bu�er overow vulnerabilities in the stack even in programs
compiled with StackGuard or StackShield [6]
Last, but not least, it is necessary to take into account that:
1. gcc is NOT the only C compiler available.

2. Checks introduced by a compiler are not selective: each
function of any process is a�ected. Even if benchmarks
of single applications do not show signi�cant performance
degradation, it is unclear what is the impact on the perfor-
mance if the entire system software (kernel, libraries, utili-
ties,...) is compiled with StackGuard (or StackShield).
Other groups in the past have proposed to address security

issues by means of special controls on the values of system
calls arguments. In [12] a user{level tracing mechanism to
restrict the execution environment of untrusted helper ap-
plications is described. Our solution is based on a similar

181

Table 6: Results from performance tests (in seconds)
Application elapsed time (standard kernel) elapsed time (patched kernel)

sendmail 1:32� 0:05 1:33 � 0:04
lpr 2:08� 0:1 2:1� 0:15

rsync 10:16 � 0:8 10:36 � 0:6
X server 0:101 � 0:001 0:102 � 0:002

analysis of the potential problems associated with some sys-
tem primitives, but we control a di�erent set of programs
(i.e. root daemons and setuid programs instead of helper
applications). We add our additional checks to the system
calls code mainly for performance reasons but the impact
on existing kernel code is reduced to the bare minimum (no
change just additions).
The Domain and Type Enforcement (DTE) is an access con-
trol technology which associates a domain with each run-
ning process and a type with each object (e.g, �le, network
packet). At run time a kernel-level DTE subsystem com-
pares a process's domain with the type of any �le or the
domain of any process it attempts to access. The DTE sub-
system denies the attempt if the requesting process's domain
does not include a right to the requested access mode for
that type. DTE is a very general approach to mandatory
access control, however it requires deep kernel modi�cations
(about 17,000 lines of kernel resident code) and 20 new sys-
tem calls for DTE-aware applications [3].
More recently, a high level speci�cation language called Au-
diting Speci�cation Language has been introduced [17] for
specifying normal and abnormal behaviors of processes as
logical assertions on the sequence of system calls and sys-
tem call argument values invoked by the process. Unfor-
tunately, not enough information are available to us about
their \System Call Detection Engine".

6. FUTURE ACTIVITIES
We have described how simple enhancements (supported

by a detailed analysis of the system calls) of an existing
kernel code can make harmless well known threats for the
system security like bu�er overow based attacks. The pro-
totype kernel has been in use for six months in two organi-
zations and no fault due to our patches has been reported
by the users.
In the short term, we expect to add \reaction" capabilities
to our attack detection mechanism. The starting point is to
develop a kernel subsystem for intrusion tolerance. Simple
systems like the cage [4] have been already used in the past to
analyze the intruders' activities in progress without let them
notice it. However those systems were not activated on the
y during the intrusion attempt. The real-time intrusion
handling mechanism we have in mind requires the migra-
tion of the o�ending process to a distinct system designed
to reproduce the original environment as faithful as possi-
ble. We are currently investigating which is the best way
to implement this technique. Such intrusion handling sub-
system seems adequate to analyze possible collusions among
distinct intruders, and for planting trip-wires.
In the medium term, we would like to port the patches we
developed for Linux to other Unix avors whose source code
is available (xxBSD, Solaris).

Acknowledgements
The work of Luigi V. Mancini was partially supported by the
Italian MURST and the Italian CNR under project \ADESSO".

7. REFERENCES
[1] Aleph One,\Smashing The Stack For Fun And

Pro�t", Phrack Mag., V. 7, N. 49, 1996.

[2] Ames S.R., Gasser M., Schell, R.R., \Security Kernel
Design and Implementation: An Introduction", IEEE
Computer, Vol. 16, N. 7, 14-22, 1983.

[3] Badger L. et al., \A Domain and Type Enforcement
UNIX Prototype", Proceedings of the 5th USENIX
UNIX Security Symposium, Salt Lake City, UT, June
1995.

[4] Bellovin S. M., Cheswick W. R, \Firewalls and
Internet Security", Addison Wesley, 1994.

[5] Bernaschi M., Gabrielli E., Mancini L.V.,\A Reference
Monitor Patch to Linux Kernel",
ftp://ftp.iac.rm.cnr.it/pub/BufOverP/

[6] Bulba and Kil3R, \Bypassing StackGuard and
Stackshield", Phrack Mag., V. 10, N. 56, 2000.

[7] Comer D. E. and Stevens D. L. , \Internetworking
with TCP/IP Volume III", Prentice Hall, 1998.

[8] Conover M., and the w00w00 Security Team, \w00w00
on Heap Overows", http://www.w00w00.org

[9] Cowan C., et al., \Bu�er Overows: Attacks and
Defenses for the Vulnerability of the Decade",
http://www.cse.ogi.edu/DISC/projects/immunix.

[10] Cowan C. et al., \StackGuard: Automatic Adaptive
Detection and Prevention of Bu�er-Overow
Attacks", 7th USENIX UNIX Security Symposium,
San Antonio, TX, Januar 1998.
http://www.cse.ogi.edu/DISC/projects/immunix/

[11] GNU Software, \Patch utility",
http://prep.ai.mit.edu/software/patch/patch.html

[12] Goldberg I. et al., \A Secure Environment for
Untrusted Helper Applications", Proceedings of the
6th USENIX UNIX Security Symposium, San Jose,
CA, July 1996.

[13] Hastings R. and Joyce B., \Purify: Fast Detection of
Memory Leaks and Access Errors", Proceedings of the
Winter USENIX Conference, 1992,
http://www.rational.com/support/techpapers/fast detection

[14] Jones R. and Kelly P., \Bounds Checking for C",
http://www ala.doc.ic.ac.uk/phjk/BoundsChecking.html

[15] Mudge, \How to write Bu�er Overows",
http://www.l0pht.com/advisories/bufero.html

[16] OpenBSD Team, \OpenBSD Operating System",
http://www.openbsd.org

[17] Sekar R., Bowen T. and Segal M., \On Preventing
Intrusions by Process Behavior Monitoring", 1st

182

Usenix Workshop on Intrusion Detection and Network
Monitoring (ID), Santa Clara, CA, April 1999.

[18] Solar Designer, \Non-Executable User Stack"
http://www.openwall.com/linux

[19] Stevens W.R., \Unix Network Programming", II
edition, Prentice Hall 1998.

[20] Sundaram A.,\An introduction to Intrusion
Detection",
http://www.acm.org/crossroads/xrds2-4/intrus.html

[21] Vendicator, \Stack Shield: A Stack Smashing
Tecnique protection tool for Linux",
http://www.angel�re.com/sk/stackshield

[22] Wojtczuk R., \Defeating Solar Designer
Non-Executable Stack Patch". Bugtraq mailing list:
January 30 1998,
http://www.securityfocus.com/bugtraq

183

