
Xue R, Li NH, Li JT. Algebraic construction for zero-knowledge sets. JOURNAL OF COMPUTER SCIENCE AND

TECHNOLOGY 23(2): 166–175 Mar. 2008

Algebraic Construction for Zero-Knowledge Sets

Rui Xue1 (薛 锐), Ning-Hui Li2 (李宁辉), and Jiang-Tao Li3 (李江滔)

1The State Key Laboratory of Information Security, Institute of Software, Chinese Academy of Sciences
Beijing 100080, China

2Department of Computer Science, Purdue University, West Lafayette, U.S.A.
3Software and Solutions Group, Intel Corporation, Hillsboro, U.S.A.

E-mail: rxue@is.iscas.ac.cn; ninghui@cs.purdue.edu; jiangtao.li@intel.com

Revised January 3, 2008.

Abstract Zero knowledge sets is a new cryptographic primitive introduced by Micali, Rabin, and Kilian in FOCS 2003. It
has been intensively studied recently. However all the existing ZKS schemes follow the basic structure by Micali et al. That
is, the schemes employ the Merkle tree as a basic structure and mercurial commitments as the commitment units to nodes of
the tree. The proof for any query consists of an authentication chain. We propose in this paper a new algebraic scheme that
is completely different from all the existing schemes. Our new scheme is computationally secure under the standard strong
RSA assumption. Neither mercurial commitments nor tree structure is used in the new construction. In fact, the prover in
our construction commits the desired set without any trapdoor information, which is another key important difference from
the previous approaches.

Keywords zero knowledge set, Merkle tree, accumulator strong RSA assumption, random oracle

1 Introduction

Zero knowledge set (ZKS) is a new cryptographic
primitive introduced by Micali, Rabin, and Kilian[1] in
FOCS 2003. It allows a prover to commit an arbitrary
finite set S and later on, for any string x, the prover
responds with a proof whether x ∈ S or x 6∈ S without
revealing any knowledge other than these membership
assertions. While zero knowledge proof of membership
is now a routine in cryptography, the biggest challenge
in ZKS lies in the non-membership proof for potentially
infinite many elements without leaking more informa-
tion about the committed set.

It is not hard to see that a ZKS scheme could be
implemented with zero knowledge proof for the gen-
eral NP languages. However the approaches there are
very involved and far from practice. Micali, Rabin, and
Kilian[1] give an efficient construction of zero-knowledge
sets using the Merkle hash tree[2] and the Pedersen com-
mitment scheme[3]. The key point to reduce the com-
plexity is the use of “faked” Pedersen commitment with
trapdoors to deal with nonmembers of the committed

set. These “faked” commitment is developed later into
mercurial commitment[4].

The main tools in [1] is Merkle’s authentication tree
and Peterson’s commitment. After hashing strings in
{0, 1}∗ into {0, 1}k. Each string in the target set S has
a fixed position in the binary tree of depth k. They are
separately committed by the Pedersen commitments.
These commitments are then (separately) hashed with
their siblings as it does in the Merkle’s tree. Recur-
sively, these hashed values are committed with the Ped-
ersen commitments. Here we have to pay attention to
the siblings that are not in S (in the leaves) or that
has not committed value during the hash process. In
this case, a faked Pedersen commitment will be used
to commit a random value there. This faked Pedersen
commitment has a property that, with trapdoor, it can
be revealed into any desired value. The commitment in
the root is the commitment for the set S.

A proof for an element x ∈ S in the above construc-
tion consists of an authentication sequence as does in
the Merkle tree. Together with the witnesses of the
commitments at the nodes along the path from x to

Regular Paper
This work is supported by NSF of USA under Grant Nos. IIS-0430274, and CCR-0325951, and sponsors of CERIAS. Rui Xue is

partially supported by the Fund of the China Scholarship Council, partially by National Natural Science Foundation of China under
Grant No. 60773029, National Grand Fundamental Research 973 Program of China under Grant No. 2007CB311202, and the National
High Technology Research and Development 863 Program of China under Grant No. 2006AA01Z427.

Most of this work was done while Jiang-Tao Li and Rui Xue were at Purdue University.

Rui Xue et al.: Algebraic Construction for Zero-Knowledge Sets 167

the root are all real Pedersen commitments. A proof for
x /∈ S consists of only authentication sequence without
revealing any information of the witnesses.

The research works about ZKS followed are all un-
der the frame of Merkle tree. These tree-based schemes
have potential weakness that it is hard to update when-
ever the committed set are updated.

Our Contributions. In this paper, we propose a new
algebraic ZKS scheme. It is able to implement in com-
mon reference string model. The prover and verifier
will share a common random string or random param-
eter, that enables the prover to commit the set and
to provide proofs for enquired elements by the veri-
fier later. The idea is that to map each element into
unique prime numbers. The committed elements are
multiplied into one element and then committed. The
committed elements can be proved by prover and non-
committed elements also can be proved to be NOT in
the committed. The soundness is guaranteed under the
strong RSA assumption. The proof corresponding to
the queries makes use of efficient zero knowledge proof
of knowledge in exponentiations, which is secure in the
random oracle model. Our scheme is efficient in com-
mitment and storage phases as well as in communica-
tion complexity comparing to the previous approaches.

Related Work. Micali, Rabin, and Kilian[1] in-
troduced the notion of zero-knowledge set. They
gave a construction using the Merkle hash tree and
the Pedersen[3] commitment scheme introduced above.
Their construction uses “fake” Pedersen commitment
with trapdoors to deal with nonmembers of the com-
mitted set. Chase et al.[4] abstracted the commitment
construction in [1] and introduced the notion of mer-
curial commitments. It extends the general commit-
ment scheme with a “soft” commitment in addition
to the ordinary “hard” commitment. A soft commit-
ment can be decommitted as any value, that is, soft de-
commitment is not binding. The authors implemented
the mercurial commitment with several cryptographic
primitives. Recently, Liskov[5] considered the updat-
able zero-knowledge sets. Ostrovsky et al.[6] investi-
gated the general database queries for committed one,
but not to assume the privacy in general. The privacy
keeping scheme will employ the zero knowledge proof
for general NP statement and by no means efficient.
Catalano et al.[7] showed that Mercurial commitments
is equivalent to trapdoor commitment and the existence
of non-interactive zero-knowledge sets is equivalent to
the existence of collision-resistant hash functions. Gen-
naro and Micali[8] recently extended the ZSK to get
independent ZKS so that to defense the man-in-the-
middle attacks.

Our scheme is an accumulator like construction. Ac-
cumulators were first introduced by Benaloh and de
Mare[9] as a method to condense a set of values into one
short accumulator, such that there is a short witness
for each value that has been accumulated. In the mean
time, it is infeasible to find a witness for a value that
has not been accumulated. Barić and Pfitzmann[10]

proposed a construction of a collision-resistant accu-
mulator under the strong RSA assumption. Camenisch
and Lysyanskaya[11] further proposed a dynamic ac-
cumulator in which elements can be efficiently added
into or removed from the accumulator. Accumulators
have been widely used for many applications[9−12] such
as membership testing, time stamping, authenticated
directory, and certificate revocation. Jiang-Tao Li et
al.[13] introduced the notion of universal accumulator.

In a universal accumulator scheme[13], one can accu-
mulate a set of elements such that each value has either
a membership proof or a non-membership proof. How-
ever, the universal accumulator scheme proposed in [13]
cannot be used directly for ZKS because, given a set of
values to be accumulated, the accumulator reveals in-
formation about the set. In [14] a new definition for
statistical zero-knowledge sets is proposed and a new
scheme is constructed using trapdoor DDH groups. The
construction there is based on the assumption of knowl-
edge of exponentiation, and trapdoor DDH groups, but
secure in standard model. The construction in this pa-
per is based on standard assumption and with the cost
that it is secure in the random oracle model.

Organizations. The rest of this paper is organized
as follows. In Section 2, we give our notations and
security assumptions. In Section 3, we give out the for-
mal definition of zero knowledge sets. Section 4 intro-
duces several cryptographic primaries that will be used
in our main construction in Section 5. They are cited
from various sources in the literatures. The contexts
in Subsection 4.3 mainly come from [14]. In Section
5, we present our construction for zero knowledge sets.
Section 6 is dedicated to the proof of zero knowledge
property of our scheme. We conclude our paper in the
last section.

2 Notations and Assumptions

2.1 Notations

In the rest of this paper, we use the following nota-
tions. Let n = pq be an RSA modulus. Function φ(n)
denotes the Euler totient function, and Z∗n the set of
all integers less than n and relative prime to n. We use
QRn to denote the set of quadratic residues modular n.

168 J. Comput. Sci. & Technol., Mar. 2008, Vol.23, No.2

A negligible function, denoted by neg(k), repre-
sents any function that vanishes faster than the in-
verse of any fixed positive polynomial. That is, for
every polynomial p(x) and for all large enough inte-
gers n, neg(n) < 1/p(n). If S is a probability space,
then the probability assignment x ←R S means that
an element x is chosen at random according to S.
If F is a finite set, then x ←R F denotes that x
is chosen uniformly from F . If p is a predicate and
S1, S2, . . . , Sm are probability spaces, then the nota-
tion Pr[x1 ←R S1, . . . , xm ←R Sm: p(x1, x2, . . . , xm)]
denotes the probability that p(x1, . . . , xm) will be true
after the ordered execution of the probabilistic assign-
ments x1 ←R S1, . . . , xm ←R Sm.

We use notation used by Camenisch and Stadler in
[15] for the various zero-knowledge proofs of knowledge
of discrete logarithms and proofs of the validity of state-
ments about discrete logarithms. For instance,

PK{(α, β) : y = gαhβ ∧ (u 6 α 6 v)}

denotes a zero-knowledge proof of knowledge of integers
α and β, such that y = gαhβ holds, where u 6 α 6 v.

2.2 Security Assumptions

The security of our construction is based on the
strong RSA assumption, which assumes that it is infea-
sible to solve the following problem: given an RSA mod-
ulus n and a random x ←R Z∗n, find e > 1 and y ∈ Z∗n
such that ye = xmod n. The strong RSA was intro-
duced by Barić and Pfitzmann[10] and has been used
in proving the security of many cryptographic schemes
(e.g., [16–18]). It can be formally stated as follows.

Assumption 1 (Strong RSA Assumption). For
every probabilistic polynomial-time algorithms A,

Pr[n ← G(1k), x ←R Zn, (y, e) ← A(n, x) :

ye = x (mod n) ∧ 1 < e < n] = neg(k),

where G(1k) is a algorithm that generates an RSA mod-
ulus n of size k, and neg(k) is a negligible function.

Our security proofs also use the following
lemma[18,19]:

Lemma 1. For any integer n, given integers u, v ∈
Z∗n and a, b ∈ Z, such that ua = vb mod n and
gcd (a, b) = 1, one can efficiently compute x ∈ Z∗n such
that xa = v mod n.

To see the correctness of this lemma, observe that,
as gcd (a, b) = 1, one can use the extended Euclid al-
gorithm to find c, d ∈ Z such that bd = 1 + ac. Let
x = (udv−c mod n), then

xa = (ua)dv−ac = (vb)dv−ac = v (mod n).

Random Oracle Model. In our proofs, we use the ran-
dom oracle model, which is an idealized security model
by Bellare and Rogaway[20] to analyze the security of
certain natural cryptographic constructions. Roughly
speaking, a random oracle is a function H : X → Y
chosen uniformly at random from the set of all func-
tions {h : X → Y } (we assume Y is a finite set). An
algorithm can query the random oracle at any point
x ∈ X and receive the value H(x) in response. Random
oracles are used to model cryptographic hash functions
such as SHA-1. Note that security in the random or-
acle model does not imply security in the real world.
Nevertheless, the random oracle model is a useful tool
for validating natural cryptographic constructions.

Zero Knowledge Proof of Knowledge. Our construc-
tion uses zero-knowledge proof of knowledge for discrete
logarithm. Let n be an RSA modulus, g be an element
in Zn, and y = gx mod n, one can efficiently prove the
knowledge of x given g, y, and n using the protocol
in [15, 17]. We denote such a protocol runs as PK{α:
y = gα mod n}. Note that we can convert an inter-
active zero-knowledge protocol to a non-interactive one
using Fiat-Shamir heuristic[21] under the random oracle
model.

3 Definition of Zero-Knowledge Sets

A zero-knowledge set scheme consists of four prob-
abilistic polynomial-time algorithms: setup, commit,
prove, verify, where setup is to set up the public param-
eters, commit generates a commitment of an arbitrary
set, prove gives non-interactive proof for any queries,
and verify verifies the proofs generated by prove. A se-
cure zero-knowledge set scheme satisfies the following
three properties.
• Completeness: for any set S, for any x ∈ {0, 1}∗,

an honest prover who correctly generates a commitment
to S can always convince the verifier that x is in S if
x ∈ S or x is not in S if x /∈ S.
• Soundness: given a commitment to a set S formed

by a (malicious) prover, no probabilistic polynomial-
time prover could find a string x and prove that x is in
S and simultaneously prove x is not in S.
• Zero-Knowledge: there exists a probabilistic

polynomial-time simulator sim such that for any finite
set S ⊆ {0, 1}∗, no polynomial-time distinguisher can
tell whether she is interacting with an honest prover
committed to S, or interacting with the simulator sim
who has only oracle access to the set S.

Among the preceding four algorithms, setup is com-
puted jointly by the prover and the verifier, commit and
prove are executed by the prover, algorithm verify is ex-

Rui Xue et al.: Algebraic Construction for Zero-Knowledge Sets 169

ecuted by the verifier. Given a security parameter k,
the setup algorithm setup outputs a random k-bit RSA
modulus n and a generator g such that the factorization
of n is known to neither the prover nor the verifier.

Our scheme, as in [1] to generate parameters used
in Paderson like commitment, has a parameter genera-
tion procedure in order to generate an RSA modulus n,
which factorization is hard and is unknown to all poly-
nomial time algorithm including the prover and the ver-
ifier. We denote the set of such kind of RSA modula as
RSA, to denote its subset of all elements with length k
as RSA(k), an element in it as n. It will be used during
the commitment and proof. This procedure processes
according to shared reference string σ with respect to
secure parameter k. In practice this procedure could be
replaced by an agreement to use a public well known
“hard” to factor integer (like RSA challenge numbers.)

The formal definition given here is objecting to our
scheme, following [1], as follows.

Definition 1. A zero-knowledge set has four prob-
abilistic polynomial-time algorithms (setup, commit,
prove, verify), and it satisfies three secure properties.

The four algorithms are as follows.
• setup. This polynomial-time algorithm is to gen-

erate system parameters for commitment and proofs.
In our scheme, they are a random RSA modulus n and
an element g ∈ Z∗n, where the length of n is k and the
factorization of n is unknown. That is,

(n, g) ←R setup(1k, σ)

where n ∈ RSA(k), g ∈ Zn and RSA(k) is the set of
RSA modulus of length k.
• commit. Given any set S, a security parameter k,

and system parameters (n, g), commit outputs a com-
mitment c. That is,

(c,SK) ←R commit(1k, σ, S, (n, g)).

• prove. This algorithm is a probabilistic
polynomial-time algorithm that, given the input
(S, 1k, σ, commit,SK), and an additional input x ∈
{0, 1}∗, computes a proof πx about x. That is,

πx ←R prove(1k, σ, c,SK , x).

• verify. Given (1k, σ, c, x, πx) as input, verify verifies
the proof with respect to whether x ∈ S or x 6∈ S. If
the proof is valid and x ∈ S, then it outputs 1; else if
the proof is valid and x 6∈ S then it outputs 0; if the
proof is invalid, it outputs ⊥.

The three security properties they enjoyed are as fol-
lows.

• Completeness. For all set S and ∀x ∈ S such that
the probability of following event is 1.

{σ ←R {0, 1}kc

;

(n, g) ← setup(1k, σ);

(c,SK) ← commit(1k, σ, S, (n, g));

πx ← prove(σ, c,SK , x):

verify(σ, c, x, πx) 6= ⊥}.

• Soundness. ∀x ∈ {0, 1}∗ and for any probabilistic
polynomial-time algorithm P ′, the probability of the
following event is negligible.

{σ ←R {0, 1}kc

;

(n′, c′, π′1, π
′
2) ← P ′(1k, σ) :

n′ ∈ RSA(k)∧
verify(1k, σ, c′, x, π′1) = 0∧
verify(1k, σ, c′, x, π′2) = 1}.

• Zero-knowledge. There exists a polynomial time
simulator sim such that for any algorithm Adv, all suf-
ficient large integer k > 0, a set S. The following two
views are computational undistinguishable: view(k) ≈
view ′(k), where view is

{σ ←R {0, 1}kc

; (n, g) ← setup(1k, σ);

(c,SK) ← commit(1k, σ, S, (n, g));

(x1, s1) ← Adv(1k, σ, c);

πx1 ← prove(1k, σ, c,SK , x1);

(x2, s2) ← Adv(1k, σ, c, s1, πx1);

πx2 ← prove(1k, σ, c,SK , x2);

· · · :n, g, c, x1, π1, x2, π2, . . .}

and view ′ is

{(σ′, n′, g′, c′,SK ′) ← sim(1k);

(x1, s
′
1) ←R Adv(1k, σ′, c′, n′);

π′x1
← sim(1k, σ′, c′,SK ′, x1);

(x2, s
′
2) ← Adv(1k, σ′, c′, n′, s′1, π

′
x1

);

π′x2
← sim(1k, σ′, c′,SK ′, x2);

· · · :n′, g′, c′, x1, π
′
1, x2, π

′
2, . . .}.

4 Building Blocks

Before we present our construction to the zero-
knowledge sets, we review two building blocks that will
be used in our scheme.

170 J. Comput. Sci. & Technol., Mar. 2008, Vol.23, No.2

4.1 Generation of Shared RSA Modulus

In our construction, the prover and the verifier share
common parameters: (n, g), where n is the product of
two large safe primes p, q. Neither the prover nor the
verifier knows the factorization of n. The following are
three possible approaches to realize this.

The first possibility is to use interactive proof prepro-
cessing model[22]. Before the commitment and proofs
procedure, prover and verifier, by employing the proto-
col by Algesheimer, Camenisch and Shoup in [23], will
interactively produce a shared RSA modulus n that is
a production of two safe primes p, q, where the factor-
ization of n is unknown to anyone.

The second possibility is to generalize RSA modu-
lus using the shared random string σ. Sander[24] first
suggested an accumulator with unknown modulus, and
worked out an algorithm to generate the shared RSA-
UFO. A number n is called an RSA-UFO if n has at
least two large prime factors p, q such that no one could,
in polynomial time, find the factorization of n = n1 ·n2

and p|n1 and q|n2. This algorithm allows prover, ac-
cording to the shared random string, to generate such
a modulus in polynomial time of k, log(1/ε), where k
is the secure parameter, and ε > 0.

By using this approach, we have to base the secu-
rity of our scheme on the so called strong RSA-UFO
assumption, which is the same as usual strong RSA as-
sumption except that the latter use RSA-UFO modulus
rather than usual RSA modulus.

The third possibility is to use those published by
the third party (such as those published as RSA chal-
lenges). We could even assume that there is a server
that takes secure parameter k and the random string σ
as input and randomly to generate in black-box an RSA
modulus n of length k as production of two safe primes.
The commitment and the proofs will be independent of
the server.

4.2 Zero-Knowledge Proof of DL

The zero-knowledge proof of discrete logarithm is
used in many literatures[15,25,26]. Our scheme will adapt
the following case of proof of discrete logarithm.

Proof of knowledge was defined in [27]. Proofs of
discrete logarithms are more important block in many
cryptographic systems ranging from identification to
voting systems. It allows a prover to convince a verifier
that he knows a solution of some kinds of discrete loga-
rithms. The proof should have the following properties:
completeness means an honest prover of knowing the
solutions can successfully convince the verifier. Sound-
ness properties mean a cheating prover of not knowing

the solution can successfully convince verifier with neg-
ligible probability. And the verifier cannot obtain useful
information about the solution that prover knows.

Let n be an RSA modulus that the discrete loga-
rithm problem is hard in Zn. Element g is an element
in Zn. The discrete logarithm of an element y ∈ Zn

to the base g is the unique integer x ∈ Zn for which
y = gx (mod n).

The conventional proof of the knowledge of the dis-
crete logarithm of y = gx to the base g processes as
follows[15]:

prover computes

r ∈R Zn, t = gr, c = H(g, y, t), v = r − cx.

The proof is (c, v). The verifier checks the validity of

t = gvyc, c = H(g, y, t).

By assumption that H is a truly random function,
the protocol can be proved to be computational zero-
knowledge in random oracle model.

This protocol is denoted conventionally as PK{α:
y = gα}.

4.3 Mapping Strings to Primes

Our construction requires that the elements in the
universe (a finite subset of which will be committed to)
be represented by prime numbers. This needs to map
any strings into primes, with the following two proper-
ties.

Unambiguity : no two strings map to the same prime
number, and each string has exactly one prime number
that it maps to.

Efficiency : the prime number corresponding to a
string can be computed in time polynomial in the length
of the string.

Although several approaches for representing bit
strings as primes are suggested in the accumulator
literature[10,16], these mappings are not unambiguous
and not suffices for the purposes here. So instead we
use the simpler mappings suggested in [14] that have
the desired properties.

We shall consider the problem of mapping binary
strings of length k into prime numbers, where k is the
security parameter (and all efficient operations should
be in time polynomial in k, with failure probability neg-
ligible in k). Consider the following mapping: first map
the given binary string unambiguously to a sufficiently
large integer t; then map it to the smallest prime num-
ber greater than t2.

This mapping relies on a widely-believed conjecture
on the density of prime numbers.

Rui Xue et al.: Algebraic Construction for Zero-Knowledge Sets 171

Conjecture 1 (Cramer-Granville Conjecture[28]).
pn+1 − pn = O(log2 pn), where pn stands for the n-th
largest prime number.

By this conjecture, for sufficiently large t, there is a
prime in the range [t2, (t + 1)2). This guarantees un-
ambiguity. Further, it also guarantees that finding the
smallest prime number greater than t2 can be done in
time polynomial in log t (using a polynomial time pri-
mality test to test each integer starting from t2, until a
prime is found).

5 Construction for ZKS

Our scheme, compared to the scheme from Micali et
al.[1], has the advantages that it does not use mercurial
commitments[4], and it does not employ tree structure
which makes it efficiently updatable. Another feature
of this construction is that it does not possess a trap-
door during the construction, which is completely def-
erent from previous construction. And our complexity
is similar to the scheme in [1] (cf. also [4]).

5.1 Construction

We use two hash functions H0 and H1 in the con-
struction. Let H be the hash function mapping each
string of length k + 1 to a prime number, H can be
constructed using the techniques in Subsection 4.3. We
define the hash functions H0 to be H0(x) = H(x‖0)
and H1 to be H1(x) = H(x‖1), which are hashes from
{0, 1}k to primes.

Construction 1 (Zero-Knowledge Sets). The
construction has the following four algorithms.

1. setup. The prover and the verifier jointly set up
the public parameters (n, g). They take the security
parameter k as the input and generate a k-bit RSA
modulus n which is the product of two safe primes.
They also randomly choose a g ←R QRn.

2. commit. To commit a set S = {x1, x2, . . . , xm},
the prover randomly chooses a k-bit binary string y and
computes

u = H1(y)H0(x1)H0(x2) · · ·H0(xm),

c = gu mod n,

where c is the commitment for the set S. The prover
keeps (S, u, y) privately for generating proofs in the fu-
ture.

3. prove. When the prover receives a query about
an element x ∈ {0, 1}∗, it will respond depending on
whether x ∈ S:
• If x ∈ S. The prover computes px = H0(x),

ux = u/px, cx = gux mod n, and sends cx to the verifier.

• If x /∈ S. The prover computes px = H0(x),
chooses a pair of integers (a, b) ∈ Z × Z such that
au + bpx = 1, and computes cx = ca mod n and
d = g−b mod n. The prover sends cx, d, and proof π

PK{(α, β) : (c1 = cα ∧ d = gβ)}

to the verifier.
4. verify. When the verifier queries about an element

x, it receives a message from the prover. The format of
the message depends on whether x is in the committed
set or not. The verifier does the following to check.
• The message is of the form (cx), i.e., the prover

asserts that x ∈ S. The verifier computes px = H0(x)
and checks

cpx
x = c (mod n).

It accepts if the preceding equation holds.
• The message is of the form (cx, d, π), i.e., the prover

asserts that x 6∈ S. The verifier computes px = H0(x)
and checks whether

cx = dpxg (mod n)

and that π is a proof that the prover knows a and b
such that cx = ca (mod n) and d = g−b (mod n). The
verifier accepts if both checks succeed.

5.2 Completeness and Soundness Properties

In this subsection, we show that our construction
is secure, i.e., our construction is complete, sound, and
zero-knowledge scheme.

Completeness. For the completeness property, we
need to show that if an honest prover can always con-
vince the verifier about the membership of the queried
element.

Theorem 1. Scheme 1 satisfies the completeness
property.

Proof. For any finite set S and any string x, the
prover can prove the membership correctly. Given a
set S = {x1, . . . , xm}, let u be computed as in the com-
mitment phase of our construction and px be H0(x). If
x ∈ S, then px|u, and the prover can compute cx such
that cpx

x = gu = c. If x 6∈ S, then gcd (px, u) = 1
with overwhelming probability. The reason is that
px 6∈ {H0(x1), . . . , H0(xm)}, and by the definition of H0

and H1, if H is a random hash function mapping each
string to a prime, then Pr[px ∈ {H1(x) : x ∈ {0, 1}∗}]
is negligible. Therefore, px is relatively prime to u, the
prover can find a and b such that au + bpx = 1. The
prover can effectively convince the verifier that x 6∈ S.

¤

172 J. Comput. Sci. & Technol., Mar. 2008, Vol.23, No.2

Soundness. The soundness property guarantees that
the prover cannot lie about the membership of any
string x. That is, it should neither allow to prove a
nonmember x of X to be a member in X, nor prove a
member to be nonmember. We have the following.

Theorem 2. Under the strong RSA assumption,
Construction 1 satisfies the soundness property.

Proof. For an adversary prover, who, given n ∈
RSA(k), g ∈R Zn, with input (1k, σ, S), outputs the
commitment c.

If the adversary can generate two proofs for some
x ∈ {0, 1}∗ that x ∈ S and x 6∈ S, i.e., there are
cx, c1, d, π such that

cpx
x = c (mod n), c1 = g · dpx (mod n)

and

π = PK{(α, β) : c1 = cα ∧ d = gβ mod n}

which means adversary could find α, β such that

cαpx = g1+βpx .

From Shamir’s Lemma 1, we get y, e ∈ Zn such that
ye = g, which break the strong RSA assumption. ¤

6 Zero-Knowledge Property

Theorem 3. The Construction 1 is a computational
zero-knowledge scheme in the random oracle model.

For the proof of the zero-knowledge property, we
construct a polynomial time algorithm sim to simulate
a real proof procedure, such that a view generated by
sim is computationally indistinguishable from a view in
an actual protocol run.

The main idea of constructing the simulator sim is
as follows: given security parameter k, and an oracle
for answering membership queries for a finite set S,
the simulator sim generates two safe primes of length
k/2, whose product is n′; sim also chooses an element
g′ ∈ QRn′ , where QRn′ is the set of all quadratic
residues in Z∗n′ . The simulator sim then chooses a
prime p′ ∈ {0, 1, . . . , bn/4c} at random, and computes
c′ = gp′ . Suppose polynomial q(·) is a a bounding
polynomial for queries. Simulator sim chooses a string
σ′ ∈ {0, 1}O(q(k)) at random for shared random string.
The output is (σ′, c′, p′), where p′ is the secret to be
used in proof. Whenever an element x ∈ S is enquired,
simulator sim will, after enquiring oracle S, produce
p′′ = H0(x) and compute c′1/p′′ with the knowledge of
the factorization of n′, to output c′1/p′′ as the answer. If
an element x /∈ S is enquired, simulator does the same

as the prover does in Construction 1, though with dif-
ferent parameters. In either case, if an element y sat-
isfying H0(y) = p′′ is enquired, then output nothing.
This, however, will happen with negligible probability.

Simulator sim. On input k, S, where S is an ora-
cle to sim and k is security parameter. Simulator sim
proceeds as follows.

1) Parameters Setting Up. Let q(·) be a polynomial
bounding the number of queries. The simulator sim
starts by uniformly selecting a string σ ∈ {0, 1}O(q(k))

to be used as the shared random string during the
querying and answering process.

The simulator sim chooses two safe primes p′, q′ of
length k/2, computes n′ = p′q′, and chooses a gen-
erator g′ ∈ QRn′ . It also chooses another prime
p′′ ∈ {0, 1, . . . , bn′/4c} and computes c′ = g′p

′′
. The

simulator outputs (σ′, n′, g′, c′, p′′).
2) Simulating the Proofs. For a sequence of adap-

tive chosen elements x1, x2, . . . , xm, . . ., the simulator
sim conducts a sequence of proofs π′1, π

′
2, . . . , π

′
m corre-

spondingly.
The simulator sim imitates the proof of membership

(or nonmembership) of x in S as follows: when receiv-
ing a query about the element xi, let px = H0(x0), sim
queries the oracle for S, and
• if x is in S, sim computes cx = c′1/px mod n′ using

the knowledge of φ(n′), and outputs cx as the proof;
• if x is not in S, sim computes (a′, b′) such that

a′p′′ + b′px = 1, and computes c′a
′

mod n′ and d′ =
g′(−b′) mod n′. It then outputs (c′, d′, π′) as the non-
membership proof, where π′ is a zero-knowledge proof
of knowledge PK{a′, b′| c′1 = c′a

′ ∧ d′ = g′b
′}.

We use view t to denote the view of interacting with
the actual protocol in Construction 1 and view ′t to de-
note the view generated by the simulator sim, where t
is the number of queries one makes.

These two views are given as follows.

view t = {σ ←R {0, 1}kc

; (n, g) ← setup(1k, σ);

(c,SK) ← commit(1k, σ, S, (n, g));

(x1, s1) ← Adv(1k, σ, c);

πx1 ← prove(1k, σ, c,SK , x1);

(x2, s2) ← Adv(1k, σ, c, s1, πx1);

πx2 ← prove(1k, σ, c,SK , x2);

· · · :n, g, c, x1, π1, x2, π2, . . . , xt, πt},
view ′t = {(σ′, n′, g′, c′,SK ′) ← sim(1k);

(x1, s
′
1) ←R Adv(1k, σ′, c′, n′);

π′x1
← sim(1k, σ′, c′,SK ′, x1);

(x2, s
′
2) ← Adv(1k, σ′, c′, n′, s′1, πx1);

Rui Xue et al.: Algebraic Construction for Zero-Knowledge Sets 173

π′x2
← sim(1k, σ′, c′,SK ′, x2);

· · · :n′, g′, c′, x1, π
′
1, x2, π

′
2, . . . , xt, π

′
t}.

We now show that view t and view ′t are computation-
ally indistinguishable, provided that H0(xi) 6= p′′ for all
i 6 t, which holds with overwhelming probability.

Lemma 2. For any polynomial time algorithm D
and any t ∈ O(q(k)), if H0(xi) 6= p′′ for all i 6 t, the
following is negligible over k.

|Pr[D(view t,) = 1]− Pr[D(view ′t) = 1]| (1)

where the probabilities are over the coin toss of D and
σ, σ′ which view t and view ′t depend on.

Proof. We denote D(view t) = 1 as A(t), and
D(view ′t) = 1 as A′(t), then
∣∣Pr[D(view t) = 1]− Pr[D(view ′t) = 1]

∣∣
=

∣∣Pr[A(t)|A(t− 1)] · Pr[A(t− 1)]

− Pr[A′(t)|A′(t− 1)] · Pr[A′(t− 1)]
∣∣

6
∣∣Pr[A(t)|A(t− 1)]

− Pr[A′(t)|A′(t− 1)]
∣∣ · Pr[A(t− 1)]

+
∣∣Pr[A(t− 1)]− Pr[A′(t− 1)]

∣∣ · Pr[A′(t)|A′(t− 1)],

(2)

To prove the proposition, the following claim is used.
Claim 1. The following formulae α1, α2 are all neg-

ligible functions in k:
(a) α1 = |p1 − p2|, where p1 = Pr[D(n, g, c, 1k) = 1]

and p2 = Pr[D(n′, g′, c′, 1k) = 1].
(b) α2 =

∣∣Pr[πt = δ] − Pr[π′t = δ]
∣∣, where δ is

an element 1 6 δ 6 max{|QRn|, |QRn′ |} if xt ∈ S,
and a tuple (h1, h2)① if xt /∈ S, where 0 < h1, h2 6
max(|QRn|, |QRn′ |).

With the claim we proceed with the proof of Lemma
2. Suppose, for the sake of contradiction, that (1) is
not negligible, then there exists a polynomial time al-
gorithm D such that for some values t, (1) is not neg-
ligible. Let t0 be the smallest such number, then

∣∣Pr[A(t0 − 1, k)]− Pr[A′(t0 − 1, k)]
∣∣ = neg(k) (3)

and (a) of Claim 1 is the base case. And (b) of Claim
1 implies

∣∣Pr[A(t0, k)|A(t0 − 1, k)]

− Pr[A′(t0, k)|A′(t0 − 1, k)]
∣∣ = neg(k). (4)

These together imply that (2) is negligible and hence
(1) is also negligible in k. This ends proof of Lemma 2.

¤

We now prove Claim 1.
(a) We need to prove that, for any r ∈

{1, 2, . . . ,max{|QRn|, |QRn′ |}}
∣∣Pr[c = r]− Pr[c′ = r]

∣∣ = neg(k).

This is true because |n| = |n′| = k and g and g′ can
be considered to be the generators of QRn and QRn′ ,
respectively (readers can refer to [29] for more details).
In this case, |QRn| = φ(n)/2, QRn′ = φ(n′)/2. Then
Pr[c = r] = 2/φ(n) and Pr[c′ = r] = 2/φ(n′). Since n
and n′ are safe integers of length k, φ(n) and φ(n′) are
integers of length 2k−3; therefore,

∣∣Pr[c = r]− Pr[c′ = r]
∣∣ =

∣∣∣ 2
φ(n)

− 2
φ(n′)

∣∣∣

=
∣∣∣2(φ(n′)− φ(n))

φ(n)φ(n′)

∣∣∣ 6
∣∣∣ 2 · 2k−3

2k−42k−4

∣∣∣

=
1

2(k−6)
= neg(k).

(b) The case that xt ∈ S can be proved in ways
similar to the proof in part (a).

For the case x = xt /∈ S, the tuple (h1, h2) satisfies
0 < h1, h2 6 max(|QRn|, |QRn′ |). The real proof in
Construction 1 outputs cx, d satisfying cx = ca = gua ,
d = g−b such that au + bpx = 1.

We notice that for any a, there is a prime p such that
p - au and au is prime to p. Then there exists b such
that au + bp = 1. While for any b ∈ {1, . . . , |QRn|}
that is relatively prime to u, there exists an integer
a ∈ Zn such that au + bq = 1. That is, a ranges
over {1, . . . , |QRn|}, and b ranges over all integers in
{1, . . . , |QRn|} that are relatively prime to u and has
φ(u) + |QRn|/u possibilities.

Pr[πt = (h1, h2)] =
1

|QRn|
(
φ(u) +

|QRn|
u

) .

Similarly,

Pr[π′t = (h1, h2)] =
1

|QRn′ |(φ(p′′) +
|QRn′ |

p′′

) .

We thus have
∣∣Pr[πt = (h1, h2)]− Pr[π′t = (h1, h2)]

∣∣

=
∣∣∣ 1
|QRn|(φ(u) + |QRn|/u)

− 1
|QRn′ |(φ(p′′) + |QRn′ |/p′′)

∣∣∣

①Here we treat the zero-knowledge proof of discrete logarithm as a black box, without consideration further.

174 J. Comput. Sci. & Technol., Mar. 2008, Vol.23, No.2

6
∣∣∣ α · β
|QRn|2 · |QRn′ |2

∣∣∣

6
∣∣∣max(|QRn|3, |QRn′ |3)
min(|QRn|4, |QRn′ |4)

∣∣∣

6 (2(k−2))3

(2(k−4))4
=

23k−6

24k−8
=

1
2k−2

= neg(k).

where α = max(|QRn|, |QRn′ |) and β =
max(|QRn|2, |QRn′ |2).

This proves Claim 1.

7 Conclusion and Future Work

A new zero knowledge set construction based on the
accumulators is proposed. Our scheme is completely
different from the existing ones in that ours is an al-
gebraic construction without tree, without trapdoor,
and with no mercury commitment components. It is
efficient in commitment and storage. In addition, the
length of proof is much shorter than previous schemes.

The future work includes extending our scheme to
have independent properties as defined in [8], investi-
gating the update efficiency, and extending it to imple-
ment more general queries other than just membership
queries.

References

[1] Micali S, Rabin M, Kilian J. Zero-knowledge sets. In Proc.
the 44th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS), Cambridge, MA, USA, 2003, p.80.

[2] Merkle R C. A certified digital signature. In Proc. Advances
in Cryptology—CRYPTO’89, Brassard G (ed.), Santa Bar-
bara, California, United States, Lecture Notes in Computer
Science, Vol. 435, Springer-Verlag, 1990, 20–24 Aug., 1989,
pp.218–238.

[3] Pedersen T P. Non-interactive and information-theoretic se-
cure verifiable secret sharing. In Proc. Advances in Cryptol-
ogy — CRYPTO’91, Santa Barbara, California, USA, 1992,
pp.129–140.

[4] Chase M, Healy A, Lysyanskaya A, Malkin T, Reyzin L.
Mercurial commitments with applications to zero-knowledge
sets. In Proc. Advances in Cryptology — EUROCRYPT’05,
Aarhus, Denmark, 2005, pp.422–439.

[5] Liskov M. Updatable zero-knowledge databases. In Proc. Ad-
vances in Cryptology — ASIACRYPT’05, Chennai, India,
2005, pp.174–198.

[6] Ostrovsky R, Rackoff C, Smith A. Efficient consistency proofs
for generalized queries on a committed database. In Proc.
ICALP, Turku, Finland, 2004, pp.1041–1053.

[7] Catalano D, Dodis Y, Visconti I. Mercurial commitments:
Minimal assumptions and efficient constructions. In Proc.
Theory of Cryptography — TCC’06, Lecture Notes in Com-
puter Science, Vol.3876, New York, Springer-Verlag, 2006,
pp.120–144.

[8] Gennaro R, Micali S. Independent zero-knowledge sets. In
Proc. ICALP (2), Venice, Italy, 2006, pp.34–45.

[9] Benaloh J C, de Mare M. One-way accumulators: A decen-
tralized alternative to digital signatures. In Proc. Advances
in Cryptology — EUROCRYPT’93, Lofthus, Norway, 1994,
pp.274–285.

[10] Barić N, Pfitzmann B. Collision-free accumulators and fail-
stop signature schemes without trees. In Proc. Advances in
Cryptology — EUROCRYPT’97, Konstanz, Germany, 1997,
pp.480–494.

[11] Camenisch J, Lysyanskaya A. Dynamic accumulators and ap-
plication to efficient revocation of anonymous credentials. In
Advances in Cryptology — CRYPTO’02, Santa Barbara, Cal-
ifornia, USA, 2002, pp.61–76.

[12] Goodrich M T, Tamassia R, Hasic J. An efficient dynamic
and distributed cryptographic accumulator. In Proc. the 5th
International Conference on Information Security, London,
UK, 2002, pp.372–388.

[13] Li J T, Li N H, Xue R. Universal accumulators with efficient
nonmembership proofs. In Proc. Cryptography and Network
Security (ACNS07), Lecture Notes in Computer Science, Vol.
4521, Zhuhai, China, Springer-Verlag, 2007, pp.253–269.

[14] Prabhakaran M, Xue R. Statistically Hiding Sets. Submitted
to ICALP 2008, 2007.

[15] Camenisch J, Stadler M. Efficient group signature schemes
for large groups. In Proc. Advances in Cryptology —
CRYPTO’97, Santa Barbara, California, USA, 1997, pp.410–
424.

[16] Gennaro R, Halevi S, Rabin T. Secure hash-and-sign signa-
tures without the random oracle. In Proc. Advances in Cryp-
tology — EUROCRYPT’99, Prague, Czech Republic, 1999,
pp.123–139.

[17] Fujisaki E, Okamoto T. Statistical zero knowledge protocols
to prove modular polynomial relations. In Proc. Advances in
Cryptology — CRYPTO’97, Santa Barbara, California, Aug.
1997, pp.16–30.

[18] Cramer R, Shoup V. Signature schemes based on the strong
RSA assumption. In Proc. the 6th ACM Conference on Com-
puter and Communications Security (CCS), Singapore, Nov.
1999, pp.46–51.

[19] Shamir A. On the generation of cryptographically strong
pseudorandom sequences. ACM Transactions on Computer
Systems, 1983 1(1): 38.

[20] Bellare M, Rogaway P. Random oracles are practical: A
paradigm for designing efficient protocols. In Proc. ACM
Conference on Computer and Communications Security,
Alexandria, VA, USA, 1993, pp.62–73.

[21] Fiat A, Shamir A. How to prove yourself: Practical solutions
to identification and signature problems. In Proc. Advances
in Cryptology — CRYPTO’86, Santa Barbara, California,
USA, 1987, pp.186–194.

[22] Santis A D, Micali S, Persiano G. Non-interactive zero-
knowledge proof systems. In Proc. RYPTO’87, Pomerance
C (ed.), Santa Barbara, California, United States, Lecture
Notes in Computer Science, Springer-Verlag, 1988, Vol. 293,
pp.52–72.

[23] Algesheimer J, Camenisch J, Shoup V. Efficient computation
modulo a shared secret with application to the generation of
shared safe-prime products. In Proc. Advances in Cryptol-
ogy — CRYPTO’02, Santa Barbara, California, USA, 2002,
pp.417–432.

[24] Sander T. Efficient accumulators without trapdoor extended
abstracts. In Proc. ICICS, Sydney, Australia, Varadhara-
jan V, Mu Y (eds.), Lecture Notes in Computer Science, Vol.
1726, Springer, 1999, pp.252–262.

[25] Chaum C, Evertse J H, van de Graaf J, Peralta R. Demon-
strating possession of a discrete logarithm without revealing

Rui Xue et al.: Algebraic Construction for Zero-Knowledge Sets 175

it. In Proc. Advances in Cryptology — CRYPTO’86, Santa
Barbara, California, USA, 1987, pp.200–212.

[26] Schnorr C P. Efficient signature generation by smart cards,
Journal of Cryptology, 1991, 4: 161–174.

[27] Feige U, Fiat A, Shamir A. Zero knowledge proofs of identity.
Journal of Cryptology, 1988, 1(2): 77–94.

[28] Granville A. Harold Cramér and the distribution of prime
numbers. Scandanavian Actuarial Journal, 1995, 1: 12–28.

[29] Shoup V. Practical threshold signatures. In Proc. Advances
in Cryptology — EUROCRYPT’00, Bruges, Belgium, 2000,
pp.207–220.

Rui Xue received his Ph.D. de-
gree in 1999 from Beijing Normal
University. As a visiting scholar, he
did research work in Purdue Uni-
versity and University of Illinois at
Urban-Champaign during 2005 to
2007. He is currently an asso-
ciate research professor at State Key
Laboratory of Information Security,
Institute of Software, and Chinese

Academy of Science. His research interests include cryp-
tographic protocols analysis, computational cryptography,
and formal methods in cryptography and computer science.
He is a senior member of China Computer Federation.

Ning-Hui Li received the B.Eng.
degree in computer science from the
University of Science and Technology
of China in 1993, and the M.Sc. and
Ph.D. degrees in computer science
from New York University, in 1998
and 2000 respectively. He is cur-
rently an assistant professor in com-
puter science at Purdue University.
Prior to joining Purdue University in

2003, he was a research associate at Computer Science De-
partment, Stanford University. Dr. Li’s research interests
are in security and privacy in information systems, with a
focus on access control. He has worked on projects on trust
management, automated trust negotiation, role-based ac-
cess control, online privacy protection, privacy-preserving
data publishing, and operating system access control. He
has published more than 60 technical papers in refereed
journals and conference proceedings and has served on the
Program Committees of more than three dozen interna-
tional conferences and workshops. Dr. Li is a senior member
of the IEEE, and a member of the ACM and the USENIX
Association.

Jiang-Tao Li received his B.S.
degree from the University of Science
and Technology of China in 1999.
He obtained his M.S. and Ph.D. de-
grees from Purdue University in 2002
and 2006, respectively. He currently
works at Intel Corporation as a secu-
rity architect. His research interests
are in the area of applied cryptogra-
phy and privacy.

