An Efficient Framework for User Authorization Queries in
RBAC Systems

Guneshi T.
Wickramaarachchi
Purdue University
305 N. University Street, West
Lafayette, IN 47907, USA

gwickram@purdue.edu

ABSTRACT

The User Authorization Query (UAQ) Problem for RBAC, intro-
duced by Zhang and Joshi [9], is to determine the set of roles to
be activated in a single session for a particular set of permissions
requested by the user. This set of roles must satisfy constraints that
prevent certain combinations of roles to be activated in one session,
and should follow the least privilege principle. We show that the
existing approach to the UAQ problem is inadequate, and propose
two approaches for solving the UAQ problem. In the first approach,
we develop algorithms that use the backtracking-based search tech-
niques developed in the artificial intelligence community. In the
second approach, we reduce the problem to the MAXSAT problem
which can be solved using available SAT solvers. We have imple-
mented both approaches and experimentally evaluated them.

Categories and Subject Descriptors

D.4.6 [Security and protection]: Access controls

General Terms

Security

Keywords

Role Based Access Control, Constraints

1. INTRODUCTION

Role-based access control (RBAC) systems have the notion of
sessions. In each session, a user can activate a subset of the roles
that the user is authorized for. In [9], Zhang and Joshi introduced
the User Authorization Query (UAQ) Problem, defined as “deter-
mining the set of roles to be activated in a single session for a
particular set of permissions requested by the user”. When de-
termining which set of roles should be activated in a session, there
are several competing concerns. First, one has to ensure that the de-
sired permissions are covered by the roles and hence are available
to the session. Second, one has to ensure that the set of roles satisfy

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SACMAT’ 09, June 3-5, 2009, Stresa, Italy.

Copyright 2009 ACM 978-1-60558-537-6/09/06 ...$5.00.

Wahbeh H. Qardaji

Purdue University
305 N. University Street, West
Lafayette, IN 47907, USA

wqgardaji@cs.purdue.edu

Ninghui Li
Purdue University
305 N. University Street, West
Lafayette, IN 47907,USA

ninghui@cs.purdue.edu

all constraints governing role activations, such as those forbidding
certain combinations of roles to be activated together in one ses-
sion. Third, while satisfying the first two conditions, one wants to
minimize the set of permissions that are available to the session, so
as to better achieve the least privilege principle.

While RBAC constraints have been studied extensively in the lit-
erature, little work has been done regarding the UAQ problem. The
work by Zhang and Joshi [9] is the only work that we are aware
of. Zhang and Joshi proposed a two-step algorithm for the UAQ
problem. In the first step, the algorithm uses a greedy search to
select a set of roles that cover the desired permissions while at-
tempting to minimize extra permissions these roles have. This first
step does not consider the constraints. In the second step, the al-
gorithm checks whether the set of roles selected in the first step
satisfy all the constraints. If one of the constraints is not satisfied,
then the algorithm denies the user’s request. We note that even
when there exists a set of roles that both satisfies the constraints
and covers the desired permissions, it is very likely that the two-
step UAQ algorithm in [9] will deny the request, because the greedy
search algorithm does not consider the effect of any constraint and
may choose a set of roles violating some constraint. Zhang and
Joshi also briefly discussed a naive brute-force algorithm that goes
through every subset of the set of roles that the user is authorized
for, and checks whether each subset both satisfies the constraints
and provides the desired permissions. If a user is authorized for n
roles, then such a naive brute-force approach needs to consider 2"
sets of roles; this can be greatly improved upon.

We recognize that the UAQ problem is similar in nature to con-
straint satisfaction problems that have been studied extensively in
the artificial intelligence literature over the past several decades.
Thus we can borrow ideas from this existing literature, using
backtrack-based search algorithm that uses the constraints to guide
the search. For example, if there is a constraint requiring that the no
three roles in {r1, 72,73, 4} cannot be activated at the same time,
then on the search path that 1 and 7 have been chosen, one can
remove 73 and r4 from the roles to be considered.

In this paper we introduce two approaches for the UAQ prob-
lem. In the first approach, we extend the Davis-Putnam-Logemann-
Loveland (DPLL) algorithm for solving the CNF-SAT problem. In
the second approach, we reduce the UAQ problem to the MAXSAT
problem, which asks for the maximum number of clauses which
can be satisfied by any assignment in a propositional formula. Af-
ter the reduction, we use optimized off-the-shelf SAT solvers such
as zChaff. We compare both solutions in terms of efficiency.

The rest of this paper organized as follows: In Section 2, we
define the UAQ problem. We describe our approaches to the UAQ
problems in Section 3, and the implementation details and with

experimental results in Section 4. Related work is discussed in
Section 5. We conclude in Section 6.

2. PROBLEM DEFINITION

The User Authorization Query problem takes as input a set of
permissions that a user requests to have in a session, and tries to
find an optimum set of roles to activate so that the set satisfies the
user’s permissions request and all role constraints within the sys-
tem. Ideally, the chosen set of roles should activate only the re-
quested permissions. However, this is not always possible. Hence
we also consider a more general definition of UAQ where the input
includes both a lower bound and an upper bound of the requested
permissions. Solving the UAQ problem means outputting a set of
roles that have permissions between the lower bound and upper
bound, while satisfying all constraints. In this general definition,
we consider two possible optimization objectives, one is to prefer
a set of roles that have permissions as close to the lower bound as
possible, and the other is to prefer a set that have permissions as
close to the upper bound as possible. The choice between the two
optimization objectives depends on the nature and objective of the
request.

2.1 Formal Definition of UAQ

More formally, we define the User Authorization Query(UAQ)
problem as taking the following three groups of inputs:
1. RBAC State Information: (R, P, perms) where

e R is the set of roles that the user is authorized for, i.e., the
set of roles the user can activate. For any RBAC state, it is
straightforward to find all roles that a user is authorized for.
This set includes both roles that a user is directly assigned to,
and the roles the user can activate because of inheritance.

e P is the set of all permissions in the system.

e perms : R — 27 gives the set of permissions each role in
R has.

2. The Permission Request information: (P, Py, 0bj)
where

e Py C P is the lower bound for the set of requested permis-
sions. Permissions in Py, must be available for the session.

e P, C P is the upper bound for the set of requested permis-
sions. Permissions not in P, must not be available for the
session.

We require that Py, C Pyy.

e obj € {any, max, min} indicates the optimization objective,
where any means no optimization is needed and any set of
roles that have permissions between Py, and P, is fine, max
means the more permissions the better, and min means the
fewer permissions the better.

3. Constraints: C represents the set of constraints that limit
which roles in R can be activated together. We consider the fol-
lowing two kinds of constraints, which are the same as those con-
sidered in [9].

e DSoD (Dynamic Separation of Duty) constraints:
({r1,72...7n},t) means that no single user can activate
within a single session ¢ or more roles from the n roles listed.

e Cardinality constraints: a constraint (r,) specifies that there
can be at most ¢ activations for the particular role . Such
a constraint is easy to handle. One counts how many acti-
vations of r there currently are, if r is already activated in
t sessions, then the role r should be removed from R, i.e.,
should not considered in the search process. If r is activated
in no more than ¢ — 1 sessions, then r can be considered.

The UAQ problem should output a set R C R such that the
following three conditions hold:

1. Pp C perms(R) C Py
2. R satisfies all constraints in C'.

3. When obj = max, then for any R’ that also satisfies the
above two conditions, we have |R| > |R’|. When obj =
min, then for any R’ that also satisfies the above two condi-
tions, we have |R| < |R'|.

We note that the special case of UAQ where Py, = P, is NP-
complete. This was observed and proved in [2, 9] by reducing the
Minimal Set Cover (MSC) problem with uniform cost to it. The
UAQ problem in general is thus NP-hard.

2.2 Comparison with Previous Definitions

Our definition of the UAQ problem is inspired by that in [9],
and generalizes it. In [9], Zhang and Joshi use only one set of
permissions P, as input, as compared to our usage of Py, and Py;.
They consider two cases. One is when least privilege is the primary
concern, and one wants to ensure that no permission outside Py is
available to the session. In this case one wants to find R such that
perms(R) is a subset of P, but is as large as possible. We note
that this is a special of our definition where

Py, :¢; Puy :Precﬁ Ob] = max.

The other case is when the availability is the major concern, and
one wants to ensure that all permissions in Py, are available to the
session. In this case, one wants to find R such that perms(R) is a
superset of P, and is as small as possible. We note that this is a
special case of our definition where

Plb :P'req; Pub :Pv Ob] = min.

Our definition of using both an upper bound and a lower bound
provides more flexibility, and we believe it is more practically use-
ful, since often times the system security policy would want to en-
sure that at least some minimal permissions are available for the
session, and some sensitive permissions are off the limit for the
session.

2.3 Role Hierarchies

When generating an UAQ instance in an RBAC system with role
hierarchies, one must exercise care with respect to the semantics of
the role hierarchy. A role hierarchy will affect the determination of
R, the set of roles a user is authorized for, as well as perms, which
determines the permissions each role has.

In [4], Joshi et al. introduced three types of role hierarchies in
RBAC systems. The inheritance-only hierarchy (I-hierarchy de-
noted by >;), the activation-only hierarchy (A-hierarchy denoted
by >.) and the inheritance-activation hierarchy (IA-hierarchy de-
noted by >). The I-hierarchy allows a senior role to acquire all the
permissions of its junior roles, but does not allow any user assigned
to a senior role to activate any of the junior roles. The A-hierarchy
allows a user assigned to a senior role to activate its junior roles,

but does not propagate permissions to the senior roles. Finally, the
IA-hierarchy is the combination of both. It is the most commonly
used and traditional type of role hierarchies in RBAC systems. In
[9], Zhang and Joshi describe how their UAQ framework applies to
hybrid hierarchies where the three hierarchy types co-exist.

These hierarchies can be straightforwardly handled when gen-
erating a UAQ instance. When computing the set of roles a user
is authorized for (i.e., R), one should consider the union of the
A-hierarchy and the IA-hierarchy. When computing the set of per-
missions available to a role r in R (i.e., perms(r)), one should
consider the union of the I-hierarchy and IA-hierarchy. In the rest
of this paper, we work with UAQ instances and assume that issues
of hybrid hierarchies are handled in the generation of the UAQ in-
stances.

In [5], Li et al. considered yet another kind of role inheritance
semantics beyond I-hierarchy and A-hierarchy. That r; is senior
to r2 may mean that whenever r is activated in one session, 72 is
also automatically activated. To see why this is desirable, suppose
that 1 is senior to 72, and r3 is senior to 74, and there is a con-
straint saying that no user can activate r2 and r4 in one session.
Without automated activation of junior roles, a user can activate r1
and r3, obtaining all permissions of r2 and r4, without violating
the constraint forbidding the simultaneous activation of r and r4.
One solution to avoid this problem is to ensure that the set C' of
constraints has the property that whenever there is a constraint for-
bidding the activation of R, there is also a constraint forbidding the
activation of R’ if R’ can be obtained by replacing some roles in
R with a common senior role. If this solution is adopted, then one
does not need to use the automated activation of junior roles inter-
pretation. We point out that the algorithms developed in this paper
can, however, be easily adapted to deal with automated activation
of junior roles. For example, whenever a senior role is selected in
the search process, the algorithm can automatically add the junior
roles, and evaluate the resulting solution.

2.4 Three Cases of UAQ

We divide the UAQ problem into three subcases and provide al-
gorithms for each of the three sub-cases.

Case 1 - Exact Match: P = P,;. This means that one wants a
set of roles with an exact set of permissions.

Case 2 - Minimal Match: ob; = min. This means that one wants
the minimal number of permission such that at least the lower
bound permissions are activated.

Case 3 - Maximal Match: obj = max. This means that one
wants as many permissions as possible within the upper
bound, while at least covering the lower bound.

For the case where P;, C Py, and obj = any, this means that
any solution within the bounds is acceptable. One can use the al-
gorithm for either the minimal match case or the maximal match
case and stops after the algorithm finds the first acceptable solu-
tion. When there are optimization objectives, these algorithms will
continue to search for better solutions.

3. ALGORITHMS FOR UAQ

In this section we propose two approaches for solving the UAQ
problem. The first approach (section 3.1) is based on general re-
cursive search techniques, and the second approach (section 3.2)
transforms a UAQ instance to a SAT instance and solving it using a
SAT solver. In both approaches, one first performs some processing
to prune the search space. For example, all cardinality constraints

are checked and any role that has already reached its cardinality
limit is removed from R. Furthermore, if any role has permissions
outside P, the role is removed. Finally, if we are finding exact
matches or minimal matches, we can also remove any role that has
no permission in Pj,. For the maximal match case, such role can
nonetheless be useful.

The first approach uses ideas from the DPLL algorithm for
SAT [7]. The algorithms do a backtracking based search where the
search tree is traversed recursively. In each recursion, it performs
the following steps:

1. Check feasibility and add mandatory roles. For each permis-
sion not yet covered, check how many candidate roles can
cover the permission. If no candidate role covers it, back-
track. If only one candidate role covers it, add the role to the
selected set.

2. If new roles are selected from the last step, then perform the
following steps.

(a) Check whether the current set of selected roles is a so-
lution, i.e., covers all necessary privileges. If so, check
whether it is a better solution than the stored current
best solution. If so, record these roles as the new best
solution.

(b) Determine whether continuing the search from the cur-
rently selected roles can lead to a better solution than
the best solution found so far. If not, then backtrack.
For example, if the goal is to have minimal number
of permissions, and the currently selected roles already
have more permissions than the current best solution,
then it is not necessary to continue.

(c) Prune the search space. Remove from the candidate set
any role that does not provide new permission not cov-
ered by the currently selected roles. Also, prune the
search space using constraints. For example, if a DSoD
constraint requires that no ¢ roles in {ri,r2,...,7,}
can be activated in one session, and one has already
chosen ¢ — 1 roles from {r1, 2, ..., 7y}, then one can
remove all other roles in {71, r2, ..., 7, } from the can-
didate set. If any role is pruned due to constraints, go
back to step 1.

3. Heuristically select the next role from the candidate roles.
4. Recursively call itself with the next role selected.

5. Recursively call itself with the next role not selected and re-
moved from the candidate set. (This considers the case of not
using this role.)

Such an algorithm dynamically prunes the search space and
hence improves the efficiency of the search process. We note that
if one just wants any solution rather than an optimal one, the algo-
rithm can stop after finding the first solution, rather than continuing
the search process. We also note that while the search for the opti-
mal solution may take a long time, one can easily set a time limit
on the search, stops when the limit is reached, and uses the best
solution found so far.

The second approach we propose is to transform a UAQ in-
stance to a MAXSAT instance and solves it using a SAT solver.
This would involve formalizing each role and permission as a SAT
variable and constructing propositional clauses to represent role-
permission relationships as well as constraints. This approach was
inspired by the approach used by Li et al. in [6] for the verification
of static mutually exclusive roles. Here we extend the techniques
to deal with dynamic role assignments.

3.1 Proposed Algorithms

Algorithm 1 implements the exact match sub case, where sys-
tem grants permissions where P,, = Preq = Fjp. The requested
permissions will be exactly matched with a set of available roles
in this case. In order to improve the performance of the search,
the roles with extra permissions than the requested permissions are
eliminated in the beginning of search. The algorithm finds the best
solution among all possible solutions. The set of selected roles
which satisfy the requested permissions is denoted as Rs.;. We de-
fine Prem as Preq \ P(Rser) which defines the permissions that
have not been covered by the selected roles. Algorithm 2 shows

Algorithm 1 ExactMatch(Preq, Ravail, Cail)

Input: R,qyqi - set of roles; Preq - requested permissions; Coi; -
all constraints

Output: Rp - set of roles which can satisfy the exact match re-
quirement

1: Rp «+— ¢

2: Rsel — (;b

3: Prem — Preq

4: forall » € Rgpei do

5: if (P(r) € Prem) then
6: remove 7 from Ry ail
7: end if

8: if (P(r) N Py = ¢) then
9: remove 7 from Ravail
10: end if

11: end for

12: selectRoles(Prem, Rsets Ravail);
13:

14: selectRoles(Prem, Rset; Ravait){
15: if Prey, = © then

16: if R = ® then

17: Rp = Rsel

18: elseif | Rz |>| Rse: | then

19: RB = Rscz

20: end if

21: return

22: end if

23: for all C; € Cyy; do

24: if (| Rsee NR(C;)| =t—1) then
25: Ravail - Ravail \ (R(Cl) \ (Rsel N R(Cl)))
26: end if

27: end for

28: if Rgvair = P then

29: return

30: end if

31: for next r in Ryyqi; do

32: if P(r)N Prew, = @ then

33: Ravait = Ravait \7'

34 end if

35: end for

36: selectRoles (Prem \ P(1), Rset U7, Ravait \ T)
37: selectRoles (Prem, Rsel, Ravail \ T)
38: }

the minimal match sub case where P, < Preq < P, and system
satisfies at least P, of the request. We define Pey¢rq as the extra
permissions than P, and this should be minimized. The algorithm
returns from the current recursion path if current Rs.; has more ex-
tra permissions than the best solution Rpg’s extra permissions. The
next role will be selected based on two factors.

e minimizing the new extra permissions provide by the se-
lected role.

e maximizing the permissions covered by the selected role
within the remaining requested permissions.

Algorithm 3 implements the maximal match sub case explained
in previous section, where system grants at most the upper bound
of permissions. Ppecdeq 1S the permissions required to reach P
(i.e. those that are within P,; and not within the permissions as-
sociated with the currently selected set of roles) and this should be
minimized. We eliminate all the roles from the search space which
has extra permissions than the upper bound permissions in order to
improve the efficiency of the search process. The next role will be
selected based on two factors.

e minimizing needed permissions to reach Py, (i.e. Preeded)
by the selected role.

e maximizing the permissions covered by the selected role
within the remaining requested permissions.

The aforementioned algorithms mimic a tree search approach
which considers all possible combinations of roles to activate. Each
branch of the tree is considered and pruned based on whether or not
any constraints are violated. With each call to select roles, the fol-
lowing is guaranteed:

e The roles in the current solution (R) are always updated to
the more optimum solution.

e The next role to be selected always satisfies the constraints
because all violating roles are removed from R,.q4; before a
role is selected.

e An alternative solution resulting from removing the currently
selected role is always considered. The current solution
would again be updated to the more optimum solution even
if it involves choosing an alternative set of roles.

This guarantees that the algorithms always generate the optimum
solution that satisfies all constraints.

The user can request set of roles to be activated during a session
as well. Algorithm 4 shows how to authorize those requests.

3.2 Translation to SAT

In this section we show how the UAQ problem can be translated
into a SAT problem (or one of its variants) which can be solved
using off-the-shelf SAT solvers (see appendix A for more informa-
tion about SAT). Although the SAT problem is NP-complete, a lot
of research has been done in optimizing SAT solvers. Hence, SAT
solvers, such as zChaff [1] are available that can produce accurate
results efficiently.

The first case where an exact set of permissions is required
(P = Prg = Pup) can be reduced to a SAT instance as follows:

Given:

e P: the set of all possible permissions in the system

e R: the set of all roles in the system that are available to the
user

e PA: the set of permission assignments {(ry,p;)|rx €
R, p; € P and p; is assigned to role r }

e RH: the role hierarchy in the form {r; > r;|r;,r; € R}

Algorithm 2 MinimalMatch(Pyeq, Ravait, Cait, Pivy Pub)

Input: R,qyqi - set of roles; Preq - requested permissions; Coi; -
all constraints; P, - lower bound permissions; P, - upper bound
permissions

Output: Rp - set of roles which can satisfy the minimal match
requirement; R, - set of solutions

1: Py, P

2: Rp— ¢

3: Rsol — d)

4: Rsel — ¢

5: Prem — P’req

6: Peztra — ¢

7: forall » € Rgypqi do

8: if (P(r) € Puy) then

9: remove 7 from Rgyqil
10: end if
11: if (P(r) N Pip = ¢) then
12: remove r from Rgyail
13: end if
14: end for

15: selectRoles (Prem, Rsel, Peatra; Ravail, Piv, Pub);
16:

17: selectRoles (Prem, Rsel, Peatra; Ravail, Piv, Pub){
18: if Prepn = @ then

19: if Rg = ® then

20: Rp = Rse

21: elseif | P(Rg) |>| P(Rset) | and P(Rse1) C Pup and
| R |>| Rsei | then

22: RB = Rsel

23: Rsol - Rsol @] Rsel

24: end if

25: return

26: end if

27: if | Pewtra | > | P(RB)\ Pw |and | P(Rp) |> O then

28: return

29: end if

30: for all C; € Cyy; do

31: if (| Rsee NR(C;)| =t—1) then

32: Ravait = Ravail \ (R(Cz) \ (Rsel N R(Cz)))

33: end if

34: end for

35: if Ravai = P then

36: return

37: end if

38: Select next r Ps.t. r:\Iljalue’ is maximum where,

39: value= 1o B

40:

41: selectRoles (Prem \ P(1), Rset U 7, Pegtra U (P(1) \
Py), Ravait \ 7, Py, Pup)

42: selectRoles (Prem, Rsels Pewtras Ravail \ Ty Piby Pub)

43: }

Algorithm 3 MaximalMatch(Preq, Ravait, Cait, Pivy Pub)

Input: Rauqi - set of roles; Preq - requested permissions; Coy; -
all constraints; P, - lower bound permissions; P, - upper bound
permissions
Output: Rp - set of roles which can satisfy the maximal match
requirement;
: Pup, Py
: Rp«— ¢
: Reel — ¢
: Prem — P’req
: Pneeded — Pub
: forall 7 € Rguai do
if (P(r) € Pu.) then
remove 7 from Ry qil
end if
: end for
11: selectRoles (P'rem, Rseh Pneeded, Ra'uail, Plb7 Pub);
12:

SOOI UNE W —

13: selectRoles (Prem7 Rseh Pneededy Ravail, Plb7 Pub){
14: if Rp = @ then

15: RB = Rsez

16: elseif | P(RB) |<| P(Rset) | and Py, C P(Rser) then
17: RB - Rsel

18: end if

19: if | Preeded | > | Py \ P(RB) | and| P(RB) |> 0 then
20: return

21: end if

22: forall C; € Cyy; do

23: if (| Rser N R(C»L) | =t —1) then

24: Ravait = Ravail \ (R(Cz) \ (Rsel N R(Cz)))
25: end if

26: end for

27: if Rgvpai = P then

28: return

29: end if

30: Select next r s.t. ‘value’ is maximum where,

: - |P(r)NPrem|
31: value = |(Pup\P(r))NPpeeded|

32: selectRoles (Prem \ P(r),Rset U T, Ppeedea \ ((P(r) N
Pneeded)): Ravail \7”, Plb7 Pub)

33: selectRoles (Prem, Rset, Preeded, Ravait \ 7, Piby, Pub)

34: }

Algorithm 4 (I‘ERQ7 Ravail, Ca”)
Input: Rguai - set of roles; Rrg - requested roles; Coy - all
constraints;
Output: true/false;

1: if | Rro \ (Rr@ N Ravait) |> 0 then
2 return false

3: end if

4: for all C; € Cyy; do
5: if (| Rro N R(C;)| =t) then
6:
7

8
9

return false
end if
: end for
: return true

e (: the set of all constraints of the form
({ri,...,rjlri,...,r; € R}, t). For the single user as-
signment problem, cardinality constraints can be converted
to this form as described earlier in the paper.

Formalization:

e For each p; € P, let p; denote a SAT variable which is true
if and only if p; is activated.

e Foreach r; € R, let r] denote a SAT variable which is true
if and only if r; is activated.

e For each r; € R, construct the set H,, = {r|r; > r}. This
will denote all the roles r; is superior to.

1. S = 0 // the initial set of clauses

2. For each p; € Prg, mark p? as a non-relaxable ' clause and
additto S

3. For each p; € P\ Prg, mark —p; as a non-relaxable clause
and add itto S

4. For eachrole r;, € R, construct an equivalence propositional
clause of the form

e = DiADFI A ADLATIAT; AN AT

where (rg,pi), (Tk,D;5), - - (T, D1) € PA and
T§,Tj,...71 € Hp, , mark it as non-relaxable and add
itto S.

5. For each permission py € P, construct a clause of the form
pp— (riVr; V...V

where (pr,7:), (Pk;T5)s - - - (Pk, ™) € PA, mark it as non-
relaxable and add it to .S.

6. For each constraint ({r;,...,r;},t) € C. Construct a
clause of the form —ry V...V —r{ for all roles in each ¢-sized
subset of {r;, ..., r;}. Mark the clause as non-relaxable and
additto S

7. Solve S using a SAT solver

8. If the solver returns SATISFIABLE, then activate each role
r; € R such that r} is set to true

Steps 2 and 3 of the formulation ensure that only permissions in
the request set are satisfied and all others are not. Alternatively,
as an optimization, all requests which contain permissions outside
the permission set can be initially removed before converting the
problem to a SAT instance. Step 4 makes sure that a role r is ac-
tivated if and only if all its children are activated. Step 5 confirms
that a permission is not activated unless it belongs to an activated
role. Note that this formulation, unlike the algorithmic approach,
does not allow a role to remain inactive if all its permissions are
activated. If, however, system designers view this as a requirement,
then role clauses generated in step 4 can be marked as relaxable
and the PMAX-SAT approach described later in this section can be
applied.

In the case where constraints are unsatisfiable, there are two pos-
sibilities for role assignments:

'a non-relaxable clause is a propositional clause that is hard, i.e. it
must be satisfied if the instance as a whole is satisfiable

e Favor the maximal solution by activating as many roles as
possible such that all permissions in Pj; as well as the maxi-
mum number of permissions in Pub are satisfied.

e Favor the minimal solution by activating the smallest number
of roles such that all permissions in P, are satisfied.

These two cases can be easily translated to a partial maximal
satisfiability problem. Partial maximal satisfiability (PMAX-SAT)
is a special variation of the MAX-SAT problem whereby certain
clauses are relaxable and others are non-relaxable. PMAX-SAT
aims to satisfy all non-relaxable clauses as well as a maximum
number of relaxable ones [3]. To translate the role assignment prob-
lem to a PMAX-SAT problem, a SAT instance is created which is
satisfied if and only if the maximum (or minimum) number of roles
is activated while satisfying all constraints. All permissions in Py,
are translated into non-relaxable propositional clauses; all relaxable
permissions (P, \ Pi) are translated into relaxable propositional
clauses.

To satisfy the maximum number of permissions in Py, all per-
mission variables in Py \ Pjp are initially set to true. Since PMAX-
SAT aims at satisfying the largest number of relaxable clauses and
given that the only relaxable clauses here are permissions, then us-
ing PMAX-SAT on this formulation will give the SAT instance that
would satisfy the maximum number of wanted permissions, vis-a-
vis the maximum number of wanted roles, while also satisfying all
constraints.

To satisfy the minimum number of permissions in P, all per-
mission variables in Py \ Pjp are initially set to false (i.e. —py).
Since PMAX-SAT aims at satisfying the largest number of relax-
able clauses then a minimum number of these permissions will be
set to true in the SAT instance.

The translation can be formalized as follows:

e For all permissions p; € Py, mark p; as a non-relaxable
clause and add it to .S

e To favor the minimal solution: apply the previous SAT for-
mulation, but for each p; € Py \ P, mark —p; as a relax-
able clause and add it to S.

e To favor the maximal solution: apply the previous SAT for-
mulation, but for each p; € Py \ Pis, mark p; as a relaxable
clause and add it to .S.

Fu and Malik proposed an approach for solving the PMAX-SAT
problem [3]. The algorithm they presented was successfully imple-
mented in solving the PMAX-SAT role activation problem using
the above formulation.

The following example illustrates the above formulations for the
exact match case:

P = {p1,p2,p3,pa}

R ={ry,ro,r3}

PA= {(r17p1)7 (7“1,])2), (T2>p2)7 (Tz,pg), (Ts,p4)}
RH = {7‘3 2 7“2}

Prq = Puy = Pi = {p1,p2,ps}
C={{r,rs},2)}

The input to the SAT solver would be:

70 30
60 a5
—SAT Approach ——SATApproach
50
3 20 —H—
‘3 40 Algorithmic Approach AY ‘E Algorithmic Approach
£ g 15 T
= 30 E
g 510
20 S
10 5 1
__-__.—'-'-
W N B
D-|||||||||||||||||||||||||||" 0 o Il_||_|_|;|'"llIIIIIIIIIIIIIIIIIIIIIIIIIII
567 8 91011121314151617181920212225324252627282930313233 5 7 © 1113151719 212325 27 20 3133 35 37 3041 43 45 47 49
Number of Roles Number of Roles
Figure 1: CPU Time for Minimal Match Case Figure 2: CPU Time for Maximal Match Case
07
v U v
s < (p4 A TQ) SATApproach f
v v —
P — (7‘1) 06 . .
Py — (7"11) \ TS) os Algorithmic Approach
v v —
p3 — (r5) g /’/
(% v -2
Py — (T3) E 04 /J
v v
7” a—
Vs E o3
o /
=]
02 /
4. IMPLEMENTATION AND RESULTS 01
In this section we present our experimental results for the UAQ R

framework presented in the previous section. We implemented the
SAT approach using the zChaff SAT solver [1] following the maxi-
mal satisfaction algorithms introduced in [3] to implement the min-
imal and maximal satisfaction cases. We also compare our results
with those from the greedy framework introduced in [9].

In order to run the experiments, we generated random test cases
with a varying number of roles. The ratio of roles to permissions
(1:12), roles to constraints (5:1) and roles to number of permissions
requested (1:1) were kept constant in all the experiments in order
to facilitate averaging and comparison. For each role, 10 randomly
generated test cases were run and the results were used to generate
the graphs.

The following experimental results show the CPU time taken
by each program. For the SAT approach, this includes the time
taken to construct the proper input files to the SAT solver. If the
SAT solver is implemented in a real system, this conversion pro-
cess would be more transparent and thus the performance would be
slightly better. Furthermore, the efficiency of the SAT approach is
dependent upon the SAT solver used. While for the purposes of this
experimentation we found zChaff to be most suited for efficiently
generating unsat cores for use in maximal satisfaction, other com-
mercially available solvers may prove to be more efficient.

4.1 Minimal Match Case

Figure 1 shows the result of running the experiments for the min-
imal match case averaged over 10 times per role. For smaller num-
bers of roles, permissions and constraints, the two approaches pro-
duce comparable results, with the algorithmic approach performing
slightly better. However, as the number of roles increases, the time
taken for the algorithmic approach increases exponentially making
it impractical for implementation in dynamic systems. The CPU
time taken by the SAT approach did not exceed a few seconds, even
for a larger number of roles and permissions. This makes the SAT
approach acceptable in all cases for the minimal match approach.

5 B1114172023262093235384144475053565096265687174

Number of Roles

Figure 3: CPU Time for Exact Match Case

4.2 Maximal Satisfaction Case

Figure 2 shows the result of running the experiments for the
maximal match case. In this case, the algorithmic approach per-
forms quite well for smaller numbers of roles, permissions and
constraints. As the number of roles increases, the overall trend in
time taken increases exponentially. The time taken for the SAT ap-
proach, on the other hand, provides better overall results for larger
number of roles. The figure shows certain “dips” in CPU time that
deviate from the trend even though the results in the graph are the
average of running the experiment multiple on the with random test
cases generated with the same number of roles. This is suggestive
of the effectiveness in heuristically choosing a particular role with
certain test cases as opposed to others. If a role is appropriately
chosen, the overall search tree will be well-pruned and the overall
running time would be better. Finding better ways for heuristically
choosing the next role in the search in order to optimize the algo-
rithms may prove to be an interesting area or research albeit beyond
the limited scope of this paper.

4.3 Exact Match Case

Figure 3 shows the result of running the experiments for the exact
match case. In this case, both algorithms performed very well with
results for large roles taking less than one second of CPU time.
The algorithmic approach consistently out-performs the SAT ap-
proach in all cases. It is worth noting here that a large number of
experiments for this case produced no solution due to the random

P(10) ={p14, p10,p17,p13, p7,p3}
P(r1) ={p10, p1, p2}

P(2) ={p18}

P(r3) ={p10, p8, p2,p12, p15}

P(r4) ={p13, p10, p8, p11, p6, p16, p18, p9}
P(5) ={p14, p1, p10, p6, p8, p13, p5, p16, p15}
P(16) ={p16}

P(17) ={p8, p10, p15}

P(8) ={p10, p11,p14, p13, p4}

P(19) ={p12,p17, p1,p5, p14}
P(r10)={p18, p19, p2,p16, p1, p3, p7}
P(r11)={p9, p10, p3}

P(r12)={p5, p12, p0}
P(r13)={p18, p15, p12}
P(r14)={p19,p10, p13, p4, p12, p14}
P(r15)={p15}

P(r16)={p2, p12}

P(r17)={p1, p5, p4, p13, p7,p10}
P(r18)={p11, p13, p10}
P(r19)={p13,p11}

Constraints:
({r2,r3,76,7r7,r12,r13,7r15,718},2)

Figure 4: Role-permission assignments and DSOD constraints

generation of constraints. In general, when there is no solution,
the algorithmic approach out-performs the SAT approach. This ex-
plains the difference in performance shown in the graph in figure
3.

4.4 Comparison with Greedy Approach

To compare our results with the UAQ approach proposed in [9]
we implemented the greedy algorithms proposed and ran them on
the same test cases we used for our algorithms according to the
formulation introduced in 2. The UAQ approach in [9] may pro-
duce a sub-optimal solution or a solution which fails the activation
checking module. We show such an example where the solutions
provide by [9] do not satisty the constraints and ultimately the user
request get rejected. Figure 4 represents the role-permission rela-
tionships and DSoD constraints considered for this example. The
results are summarized in table 1. The approach defined in this
paper, on the other hand, always produces a better solution while
satisfying the constraints. The following summarizes the results
out of approximately 1000 test cases with varying numbers of roles
and permissions:

e For the approach favoring availability (maximal match in our
framework), 94% of the test cases produced an incorrect so-
lution violating the constraints. The remaining 6% produced
sub-optimal or optimal solutions.

e For the approach favoring least privilege (minimal match in
our framework), 39% of the test cases produced an incorrect
solution violating the constraints. The remaining 61% pro-
duced sub-optimal or optimal solutions.

The approach proposed in [9] uses greedy approach and does
not need to search through the solution space to find a solution that
satisfy all the constraints. Hence, direct time comparison between
the approach in [9] and our approach is not meaningful.

The solutions provided by the role mapping module of the UAQ
framework of [9] violate the DSoD constraints whereas our pro-
posed algorithms suggest much better solutions while satisfying the
constraints.

Table 1: Comparison of proposed approaches with UAQ
Scenario | Input(Prq) Algo. UAQ [9]

Exact pll, p13, pl0, (r3,1r19) | (13, r18):Reject
Match p8, p2, pl12, p15

Minimal | pl8, p15, p12, pl, | (14,15, (r4,19,r15,
match po, p4, p13, p7, r17,r12) | r17,r12):Reject
pl0, p8, pl1,
p0, p14, p9
Maximal | pl8, p15, p12, pl, | (8, r13) | (18,r13,r7)
match pb, p4, p13, p7, Reject
p10, p8, p11,
pO, p14, p9

S. RELATED WORK

There are a number of user authorization frameworks in the lit-
erature which follow different approaches for authorizing user re-
quests in RBAC systems. A solution which tackles the authoriza-
tion query for Inter Domain Mapping Problem in the presence of
hybrid hierarchies was introduced in a paper by Du et al. in [2].
The paper proves that that the problem is NP-complete and pro-
vides a greedy algorithm for solving it. This work, however, does
not deal with constraints. The UAQ framework in [9] expands on
the previous approach and introduces two further cases of the prob-
lem which deal with availability and least-privilege. The paper pro-
posed a two-step algorithm for the UAQ problem. In the first step,
the role mapping module uses a greedy search to select a set of roles
that cover the desired permissions while attempting to minimize ex-
tra permissions these roles have. In the second step, the activation
checking subsystem checks whether the set of roles selected in the
first step satisfy all the constraints. If one of the constraints is not
satisfied, then the algorithm denies the user’s request. The problem
of this approach is that it unnecessarily denies many requests, be-
cause the greedy search algorithm does not consider the effect of
any constraint and may choose a set of roles violating some con-
straint.

In [6], Li et al. tackled the reduction of the verification of a static
authorization problem to a SAT instance. Their approach considers
a set of static, mutually exclusive role constraints. Our SAT ap-
proach builds on their findings and generalizes the problem for use
in dynamic scenarios.

Other related problems to user authorization query include
SAAM [8], which deals with the problem of determining whether
a user’s request should be authorized considering all the role mem-
berships of the user. The approach caches the allowed and de-
nied request/responses, and approximates future access control de-
cisions based on the cached data. This primarily deals with the
situation when there are no sessions and all roles are used in autho-
rization.

6. CONCLUSION AND FUTURE WORK

In this paper we propose efficient algorithms for user authoriza-
tion in RBAC systems. The algorithms we explained are based
on optimized recursive search and transforming user authorization
framework queries to a SAT instance and solve it using a SAT
solver. We proposed three algorithms for each approach which ex-
actly match the requested permissions, minimally match where at
least lower bound permissions are satisfied and maximally match
where at most upper bound permissions are satisfied. We also talk
about how this system applies when there are hierarchical role as-
signments and DSOD constraints in RBAC systems. We compared

our algorithms with the UAQ framework in [9] which is a sub case
of our general algorithms and found that our algorithms always pro-
vide a precise solution if there is a possible solution.

The recursive algorithmic approach for authorizing user request
works efficiently in the exact match case and when there is lesser
number of available roles in the maximal match and minimal match
cases. Our immediate focus is on optimizing this algorithm for
larger numbers of roles and do more pruning during the search pro-
cess. Also we will be integrating our implementations with real
RBAC systems to test with real scenarios. Another important path
of future research involves combining the recursive algorithmic ap-
proach and SAT based approach. Since the SAT approach can be
very efficient when there is a small number of clauses and the al-
gorithmic approach can isolate no-solution scenarios, both can be
combined to give an overall more efficient approach. The recur-
sive algorithmic approach can be customized so that it can calcu-
late whether the user request can be granted and whether any of the
clauses are irrelevant and can be safely removed from the clause
set; then the SAT based approach can proceed further and find the
solution.

7. REFERENCES

[1] zchaff. http://www.princeton.edu/~
chaff/zchaff.html.

[2] S.Du and J. B. D. Joshi. Supporting authorization query and
inter-domain role mapping in presence of hybrid role
hierarchy. In SACMAT ’06: Proceedings of the eleventh ACM
symposium on Access control models and technologies, pages
228-236, New York, NY, USA, 2006. ACM.

[3] Z. Fu and S. Malik. On solving the partial max-sat problem. In
A. Biere and C. P. Gomes, editors, Proceedings of Theory and
Applications of Satisfiability Testing - SAT 2006, pages
252-265, August 2006.

[4] J. B. D. Joshi, E. Bertino, and A. Ghafoor. Temporal
hierarchies and inheritance semantics for gtrbac. In SACMAT
’02: Proceedings of the seventh ACM symposium on Access
control models and technologies, pages 74-83, New York,
NY, USA, 2002. ACM.

[5] N. Li, J. Byun, and E. Bertino. A critique of the ANSI
standard on role based access control. I[EEE Security and
Privacy, 5(6):41-49, Nov. 2007.

[6] N.Li, M. V. Tripunitara, and Z. Bizri. On mutually exclusive

roles and separation of duty. ACM Transactions on

Information and System Security, 10(2), May 2007.

C. Sinz. Visualizing sat instances and runs of the dpll

algorithm. J. Autom. Reason., 39(2):219-243, 2007.

[8] Q. Wei, J. Crampton, K. Beznosov, and M. Ripeanu.
Authorization recycling in rbac systems. In SACMAT ’08:
Proceedings of the 13th ACM symposium on Access control
models and technologies, pages 63—72, New York, NY, USA,
2008. ACM.

[9] Y. Zhang and J. B. D. Joshi. Uaq: a framework for user
authorization query processing in rbac extended with hybrid
hierarchy and constraints. In SACMAT ’08: Proceedings of the
13th ACM symposium on Access control models and
technologies, pages 83-92, New York, NY, USA, 2008. ACM.

[7

—

APPENDIX
A. SAT

A boolean expression ¢ is either a boolean variable, a negation
of a variable (—¢), a conjunction of boolean expressions (¢1 A ¢2),
or a disjunction of boolean expressions (¢1 V ¢2). Each variable
is a Boolean that can be assigned true or false. SAT is the problem
of identifying an assignment of variables of a certain boolean ex-
pression in order to make the formula evaluate to true. If such an
assignment exists, the formula is said to be satisfiable. The assign-
ment of the variables in the boolean expression is said to be a SAT
instance.

