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ABSTRACT
A high-level security policy states an overall safety requirement for
a sensitive task. One example of a high-level security policy is a
separation of duty policy, which requires a sensitive task to be per-
formed by a team of at least k users. Recently, Li and Wang [6]
proposed an algebra for specifying a wide range of high-level se-
curity policies with both qualification and quantity requirements on
users who perform a task. In this paper, we study the problem of di-
rect static enforcement of high-level security policies expressed in
this algebra. We formally define the notion of a static safety policy,
which requires that every set of users together having all permis-
sions needed to complete a sensitive task must contain a subset that
satisfies the corresponding security requirement expressed as a term
in the algebra. The static safety checking problem asks whether an
access control state satisfies a given high-level policy. We study
several computational problems related to the static safety check-
ing problem, and design and evaluate an algorithm for solving the
problem.

1. INTRODUCTION
A high-level security policy states an overall safety requirement

for a sensitive task. One well-known high-level security policy is
Separation of Duty (SoD). In its simplest form, an SoD policy states
that a sensitive task should be performed by two different users act-
ing in cooperation. More generally, an SoD policy requires the co-
operation of at least k (k ≥ 2) different users to complete the task.
SoD is a high-level policy because it does not place restrictions on
which users are allowed to perform which individual steps in a sen-
sitive task, but instead states an overall requirement that must be
satisfied by any set of users that together complete the task. An
SoD policy states only a quantity requirement and does not express
qualification requirements on users who complete a task. Recently,
Li and Wang [6] proposed an algebra that enables the specification
of high-level policies that combine qualification requirements with
quantity requirements. To use the algebra to specify high-level se-
curity policies, the administrators first identify sensitive tasks and
then, for each sensitive task t, specifies a security policy of the
form 〈t, φ〉, where φ is a term in the algebra. This policy means

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIACCS’07, March 20-22, 2007, Singapore.
Copyright 2007 ACM 1-59593-574-6/07/0003 ...$5.00.

that any set of users (we call userset) that together complete the
task must satisfy the term φ. The algebra has three kinds of atomic
terms: a role (which implicitly identifies a set of users), the key-
word All (which refers to the set of all users), and an explicitly
listed set of users. Two unary operators, ¬ and +, and four bi-
nary operators, t, u, ¯, and ⊗, can be used with these atomic
terms to form more sophisticated terms. Li and Wang [6] gave
many examples to illustrate the expressive power of the algebra.
For instance, a simple SoD policy that requires at least two differ-
ent users can be expressed using the term (All ⊗ All+). A more
sophisticated policy that requires two Clerks plus a third user who
is either a Treasurer or a Manager can be expressed using the
term (Clerk⊗ Clerk⊗ (Treasurer t Manager)).

A high-level policy can be enforced either statically or dynami-
cally. In dynamic enforcement, one identifies all steps in perform-
ing the task, and maintains, for each instance of the task, the history
of which user has performed which steps. When a user requests to
perform the next step, the request is authorized only when the over-
all security requirement can be met by allowing this user to perform
the next step. In static enforcement, one identifies the set of permis-
sions that are necessary to perform the task, and ensures that each
access control state that can be reached is safe with respect to the
policy for the task. An access control state is safe if each user-
set such that users in the set together have all the permissions for
the task (in which case we say the userset covers the permissions
for the task) satisfies the security requirement. Static enforcement
can be achieved either directly or indirectly. In direct static en-
forcement, before making changes to the access control state, one
checks that the resulting state is safe and makes the change only
when it is safe. In indirect static enforcement, one specifies con-
straints so that any access control state satisfying the constraints is
safe and thus only needs to check whether a resulting state satisfies
the constraints during state changes.

In this paper we study direct static enforcement of policies spec-
ified in the algebra proposed by Li and Wang [6]. Direct static
enforcement of SoD policies, which are a subclass of the policies
that can be specified in the algebra, has been studied by Li et al [5].
It has been shown that checking whether an access control state
satisfies an Static SoD (SSoD) policy, i.e., whether every userset
that covers the permissions for the task contains at least k users,
is coNP-complete [5]. As a policy specified in the algebra can
be more expressive and sophisticated than an SSoD policy, it is
expected that the problem considered in this paper is also in an in-
tractable computational complexity class. Computationally expen-
sive notwithstanding, we argue that the study of direct enforcement
of static high-level policies should be given higher priority than
indirect static enforcement and dynamic enforcement for the fol-
lowing reasons. First, direct static enforcement is the most simple



and straightforward enforcement mechanism for high-level security
policies. Its performance will be used as a benchmark for compari-
son when evaluating other enforcement mechanisms. Second, even
though direct static enforcement is computationally intractable in
theory, it is interesting and necessary to study its performance for
instances that are likely to occur practice. Third, direct enforcement
cannot be entirely replaced by indirect enforcement. It is often-
times difficult or even impossible to generate efficiently-verifiable
constraints to precisely capture a high-level policy. For example,
Li et al. [5] studied indirect enforcement of using Static Mutually
Exclusive Roles (SMER) to enforce SSoD policies in the context
of role-based access control (RBAC), and showed that there exist
SSoD policies such that no set of SMER constraints can precisely
capture them [5]. Most of the time, the set of constraints generated
for a security policy is more restrictive than the policy itself. That
is to say, some access control states that are safe with respect the
security policy will be ruled out by the constraints. In situations
where precise enforcement is desired, direct static enforcement is
more desirable than indirect static enforcement. We consider dy-
namic enforcement and indirect static enforcement interesting fu-
ture research problems.

In direct static enforcement, we need to solve the following prob-
lem: Given an access control state, determine whether each userset
that covers all permissions for a task is safe with respect to the term
associated with the task, we call this the Static Safety Checking
problem. To solve this, we must first solve that problem of check-
ing whether a given userset is safe with respect to a term; we call
this the Userset-Term Safety Checking problem.

Our contributions in this paper are as follows:

1. We formally define the notion of static safety polices and the
Static Safety Checking problem. We also give a necessary
and sufficient condition for a static safety policy to be satis-
fiable.

2. We study the computational complexity of the Userset-Term
Safety Checking problem.

3. We study computational complexity of the Static Safety
Checking problem. We show that the Static Safety Checking
problem is both NP-hard and coNP-hard and is in NPNP,
a complexity class in the Polynomial Hierarchy. Further-
more, we show that several subcases of the problem remain
intractable. Finally, we identify syntactic restrictions so that
if the term in a safety policy satisfies the restrictions, then
determining whether a state satisfies the policy can be solved
in polynomial time.

4. We present an algorithm for the Static Safety Checking prob-
lem. Our algorithm uses pruning techniques that reduce the
number of users and usersets needed to be considered. Fur-
thermore, we design an abstract representation of usersets
that can reduce the memory storage requirement and acceler-
ate set operations, which leads to a fast bottom-up approach
for solving the Userset-Term Safety Checking problem.

The remainder of this paper is organized as follows. In Section 2,
we review the algebra. In Section 3, we define static safety policy,
the Static Safety Checking problem and the notion of policy satisfi-
ability. We present computational complexities of the Static Safety
Checking problem in Section 4, and an algorithm for the problem
as well as its evaluation in Section 5. We discuss related work in
Section 6 and conclude in Section 7.

2. PRELIMINARY
In this section, we give a brief overview of the algebra intro-

duced in [6] and then discuss potential enforcement mechanisms
for policies specified in the algebra. The algebra is motivated by
the following limitation of SoD policies: In many situations, it is
not enough to require only that k different users be involved in
a sensitive task; there are also minimal qualification requirements
for these users. For example, one may want to require users that are
involved to be physicians, certified nurses, certified accountants, or
directors of a company. Previous work addresses this by specifying
such requirements at individual steps of a task. For example, if a
policy requires a manager and two clerks to be involved in a task,
one may divide the task into three steps and require two clerks to
each perform step 1 and step 3, and a manager to perform step 2.
This approach, however, results in the loss of the several important
advantages offered by a higher-level policy. The algebra enables
one to specify, at a high-level, a wide range of security policies with
both qualification and quantity requirements on users who perform
a task. For more information on the algebra beyond that in this
section, readers are referred to [6].

We use U to denote the set of all users andR to denote the set of
all roles. In the algebra, a role is simply a named set of users. The
notion of roles can be replaced by groups or user attributes.

Definition 1 (Terms in the Algebra). Terms in the algebra are de-
fined as follows:

• An atomic term takes one of the following three forms: a role
r ∈ R, the keyword All, or a set S ⊆ U of users.

• An atomic term is a term; furthermore, if φ1 and φ2 are
terms, then ¬φ1, φ+

1 , (φ1 t φ2), (φ1 u φ2), (φ1 ⊗ φ2), and
(φ1 ¯ φ2) are also terms, with the following restriction: For
¬φ1 or φ+

1 to be a term, φ1 must be a unit term, that is, it
must not contain +, ⊗, or ¯.

The unary operator¬ has the highest priority, followed by the unary
operator +, then by the four binary operators (namely u, t,¯,⊗),
which have the same priority.

Before formally assigning meanings to terms, it is necessary to as-
sign meanings to the roles used in the term. The following defini-
tion introduces the notion of configurations.

Definition 2 (Configurations). A configuration is given by a pair
〈U,UR〉, where U ⊆ U denotes the set of all users in the config-
uration, and UR ⊆ U ×R determines role memberships. We say
that u is a member of the role r under a configuration 〈U,UR〉 if
and only if (u, r) ∈ UR.

Definition 3 (Satisfaction of a Term). Given a configuration
〈U,UR〉, we say that a userset X satisfies a term φ under 〈U,UR〉
if and only if one of the following holds1:

• The term φ is the keyword All, and X is a singleton set {u}
such that u ∈ U .

• The term φ is a role r, and X is a singleton set {u} such that
(u, r) ∈ UR.

• The term φ is a set S of users, and X is a singleton set {u}
such that u ∈ S.

1We sometimes say X satisfies φ, and omit “under 〈U,UR〉” when
it is clear from the context.



• The term φ is of the form ¬φ0 where φ0 is a unit term, and
X is a singleton set that does not satisfy φ0.

• The term φ is of the form φ+
0 where φ0 is a unit term, and

X is a nonempty userset such that for every u ∈ X , {u}
satisfies φ0.

• The term φ is of the form (φ1 t φ2), and either X satisfies
φ1 or X satisfies φ2.

• The term φ is of the form (φ1 uφ2), and X satisfies both φ1

and φ2.

• The term φ is of the form (φ1 ⊗ φ2), and there exist usersets
X1 and X2 such that X1 ∪ X2 = X , X1 ∩ X2 = ∅, X1

satisfies φ1, and X2 satisfies φ2.

• The term φ is of the form (φ1 ¯ φ2), and there exist usersets
X1 and X2 such that X1 ∪ X2 = X , X1 satisfies φ1, and
X2 satisfies φ2. This differs from the definition for ⊗ in that
it does not require X1 ∩X2 = ∅.

It has been shown that the four binary operators are commuta-
tive and associative. We are thus able to omit some parenthesis
when writing the terms without introducing ambiguity. Note that
term satisfaction does not have the monotonicity property. In other
words, a userset X satisfying a term φ does not imply that any su-
perset of X also satisfies φ. This design was chosen in [6] because
it has more expressive power. For example, a policy that requires
(1) everyone involved in a task must be a Accountant, can be ex-
pressed as Accountant+, and (2) there must be at least two users
involved, can be expressed as (Accountant⊗Accountant+). The
policy cannot be expressed in an algebra that has the monotonicity
property, because this property mandates that a set containing two
accountants and one non-accountant user (which is a superset of
the set containing just the two accountants) satisfies the term.

The following examples demonstrate the expressive power of the
algebra.

• {Alice,Bob,Carl} ⊗ {Alice,Bob,Carl}
This term requires any two users out of the list of three.

• (Accountant t Treasurer)+

This term requires that all participants must be either an
Accountant or a Treasurer. But there is no restriction
on the number of participants.

• (Manager¯ Accountant)⊗ Treasurer

This term requires a Manager, an Accountant, and a
Treasurer; the first two requirements can be satisfied by
a single user.

• (Physician t Nurse)⊗ (Manager u ¬Accountant)
This term requires two different users, one of which is either
a Physician or a Nurse, and the other is a Manager, but
not an Accountant.

• (Manager ¯ Accountant ¯ Treasurer) u (Clerk u
¬{Alice,Bob})+
This term requires a Manager, an Accountant and a
Treasurer. In addition, everybody involved must be a
Clerk and must not be Alice or Bob.

2.1 The Enforcement of High-Level Security
Policies

A problem that naturally arises is how to enforce high-level se-
curity policies specified in the algebra. There are two dimensions
in policy enforcement. A high-level security policy specified in the
algebra may be enforced either statically or dynamically, and either
directly or indirectly.

To dynamically enforce a policy 〈t, φ〉, where t is a task and φ
is a term in the algebra, one identifies the steps in performing the
task t, and maintains a history of each instance of the task, which
includes who has performed which steps. Given a task instance,
let Upast be the set of users who have performed at least one step
of the instance. A user u is allowed to perform a next step on the
instance only if there exists a superset of Upast ∪ {u} that can
satisfy φ upon finishing all steps of the task. In direct dynamic
enforcement, the system solves this problem directly each time a
user requests to perform a step. In indirect dynamic enforcement,
the system uses authorization constraints on the steps in the task
(e.g., two steps cannot be performed by the same user) to enforce
that the policy is satisfied. For example, there are three users, say
Alice , Bob and Carl , in the system. Alice is a member of role r1;
Bob is a member of both r1 and r3; Carl is a member of r2 and r4.
There is a task consisting of two steps and any user is authorized
to perform any step. Let φ = (r1 ⊗ r2) u (r3 ⊗ r4) be a term
associated with the task. Either Bob or Carl may perform the first
step of the task. The reason is that if Bob (or Carl ) performs the
first step, then Carl (or Bob) may perform the second step to finish
that task and the userset {Bob,Carl} satisfies φ. However, Alice
is not allowed to perform the first step (nor the second step) of the
task, as any superset of {Alice} in the system does not satisfy φ.

To statically enforce the policy 〈t, φ〉, one identifies the set P of
all permissions that are needed to perform the task t and requires
that any userset that covers P satisfies the term φ. We denote such
a security policy sp〈P, φ〉 and call it a static safety policy. A static
safety policy can be satisfied by careful design (such as careful per-
mission assignments) of the access control state, without maintain-
ing a history for each task instance. In direct static enforcement,
before making changes to the access control state, one checks that
the resulting state is safe with respect to the static safety policy and
makes the change only when it is safe. In indirect enforcement, one
specifies constraints so that any access control state satisfying the
constraints is safe with respect to the policy (but possibly not the
other way around) and thus only needs to check whether a resulting
state satisfies the constraints during state changes.

In this paper, we focus on direct static enforcement. Investigating
other enforcement approaches for policies specified in the algebra
is beyond the scope of this paper.

3. THE STATIC SAFETY CHECKING (SSC)
PROBLEM

Direct static enforcement requires solving the Static Safety
Checking (SSC) Problem, which we formally define through the
following definitions.

Definition 4 (State). An access control system state is given by
a triple 〈U,UR,UP〉, where UR ⊆ U × R determines user-role
memberships and UP ⊆ U × P determines user-permission as-
signment, where P is the set of all permissions. We say that a
userset X covers a set P of permissions if and only if the following
holds:

S
u∈X{ p ∈ P | (u, p) ∈ UP } ⊇ P.

Note that a state 〈U,UR,UP〉 uniquely determines a configu-
ration 〈U,UR〉 used by term satisfaction. Hence, we may discuss



term satisfaction in a state without explicitly mentioning the cor-
responding configuration. Note that a user may be assigned a per-
mission directly or indirectly (e.g. via role membership), and the
relation UP has taken both ways into consideration.

Definition 5 (Term Safety). A userset X is safe with respect to
a term φ under configuration 〈U,UR〉 if and only if there exists
X ′ ⊆ X such that X ′ satisfies φ under 〈U,UR〉.
Definition 6 (Static Safety Policy). A static safety policy is given
as a pair sp〈P, φ〉, where P ⊆ P is a set of permissions and φ is a
term in the algebra. An access control state 〈U,UR,UP〉 satisfies
the policy sp〈P, φ〉, if and only if, for every userset X that covers
P , X is safe with respect to φ. If a state satisfies a policy, we say
that it is safe with respect to the policy.

Note that in the above definition, we require that each userset X
that covers P is safe with respect to φ (Definition 5) rather than
that X satisfies φ (Definition 3). The reason is that permission
coverage is monotonic with respect to userset. In other words, if
X covers P then any superset of X also covers P . However, as
we pointed out right after Definition 3, term satisfaction does not
have the monotonicity property. This means that static enforcement
can be applied only for policies that have the monotonicity prop-
erty. We thus define safety with respect to a static safety policy in
a monotonic fashion.

Definition 7 (Static Safety Checking (SSC) Problem). Given a
static safety policy sp〈P, φ〉, the problem of determining whether a
given state 〈U,UR,UP〉 is safe with respect to sp〈P, φ〉 is called
the Static Safety Checking (SSC) problem.

We will study the computational complexity of SSC in Section 4.
In the rest of this section, we study two other problems related to
static safety policies.

3.1 Satisfiability of Static Safety Policies
Given a static safety policy, it is natural to ask whether it is possi-

ble to satisfy the policy at all. In particular, if a static safety policy
cannot be satisfied by any access control state, it is probably not
what the designers of the policy desire.

Definition 8 (Policy Satisfiability). A static safety policy sp〈P, φ〉
is satisfiable if and only if there exists a state 〈U,UR,UP〉 such
that 〈U,UR,UP〉 satisfies sp〈P, φ〉 and there is at least one userset
in 〈U,UR,UP〉 that covers P .

Note that the above definition requires that there exists at least
one userset in 〈U,UR,UP〉 that covers P . Without this require-
ment, a state γ trivially satisfies sp〈P, φ〉, if γ does not contain any
userset that covers P . In particular, an empty access control state
satisfies any static safety policy; and thus any static safety policy is
trivially satisfiable.

A term φ is satisfiable if there exists a userset X and a config-
uration 〈U,UR〉, such that X satisfies φ under 〈U,UR〉. From
Definition 8, it is clear that when φ is unsatisfiable, a static safety
policy sp〈P, φ〉 is unsatisfiable as well. However, even if φ is satis-
fiable, it is still possible that sp〈P, φ〉 is unsatisfiable. For example,
sp〈{p1, p2}, Clerk⊗Accountant⊗Manager〉 is unsatisfiable, as
a minimal set of users having all permissions in {p1, p2} contains
at most two users, while a set of at least three users are required to
satisfy the term (Clerk⊗ Accountant⊗ Manager).

The following theorem states a necessary and sufficient condi-
tion for a static safety policy to be satisfiable. Intuitively, a policy
sp〈P, φ〉 is satisfiable when the number of permissions in P is no
smaller than the size of the smallest userset that satisfies φ.

Theorem 1. Let k be the smallest number such that there exists a
size-k userset X and a configuration 〈U,UR〉, such that X satisfies
φ under 〈U,UR〉. sp〈P, φ〉 is satisfiable if and only if |P | ≥ k.

PROOF. Let X be a sized-k userset that satisfies φ under
〈U,UR〉. On the one hand, if |P | ≥ k, we can construct an access
control state 〈U,UR,UP〉 such that X ⊆ U and X is the only
userset that covers P . In this case, 〈U,UR,UP〉 satisfies sp〈P, φ〉.
On the other hand, if |P | < k, assume by contradiction that there
exists a state 〈U,UR,UP〉 that satisfies sp〈P, φ〉. Then, there ex-
ists a userset X ′ ⊆ U such that X ′ covers P and X ′ satisfies φ.
We have |X ′| ≤ |P | < k. This contradicts the assumption that
there does not exist a userset with less than k users that satisfies φ.
In general, sp〈P, φ〉 is satisfiable if and only if |P | ≥ k.

3.2 The Userset-Term Safety Problem
To solve the SSC problem, which asks whether every userset that

covers a set of permissions is safe with respect to a term φ, we need
to solve the problem of determining whether a given userset is safe
with respect to a term.

Definition 9 (Userset-Term Safety (SAFE) Problem). Given a
userset X and a term φ, the problem of determining whether X
is safe with respect to φ is called the Userset-Term Safety (SAFE)
Problem.

SAFE is related to yet different from the Userset-Term Satisfac-
tion (UTS) problem studied in [6]. SAFE asks whether X contains
a subset that satisfies a term φ under a configuration; this is mono-
tonic in that if X is safe, then any superset of X is also safe. UTS
asks whether a userset X satisfies a term φ under a configuration
〈U,UR〉; this is not monotonic, as discussed in Section 2. This dif-
ference has subtle but important effects. For example, under SAFE,
the operator¯ is equivalent to logical conjunction, that is, X is safe
with respect to φ1¯φ2 if and only if X is safe with respect to both
φ1 and φ2. This is because X is safe with respect to φ1 ¯ φ2 if
and only if X contains a subset X0 that is the union of two sub-
sets X1 and X2 such that X1 satisfies φ1 and X2 satisfies φ2. This
is equivalent to X contains two subsets X1 and X2 such that X1

satisfies φ1 and X2 satisfies φ2. On the other hand, the operator ¯
is different from logical conjunction under UTS. That X satisfies
φ1 ¯ φ2 does not imply X satisfies both φ1 and φ2. For exam-
ple {u1, u2} satisfies All ¯ All, but does not satisfy All, because
term satisfaction is not monotonic. Another difference regards the
operation u. The operator u is equivalent to logical conjunction
under UTS, by definition of term satisfaction. On the other hand,
u is stronger than logical conjunction under SAFE. That X is safe
with respect to φ1 u φ2 implies that X is safe with respect to both
φ1 and φ2, but the other direction is not true. For example, given
UR = {(u1, r1), (u2, r2)}, X = {u1, u2} is safe with respect to
both r1 and r2, but is not safe with respect to r1 u r2.

Because of these and other differences, the computational com-
plexity results about UTS do not naturally imply computational
complexity results for SAFE. In the rest of this section, we give
the computational complexities for SAFE and compare them with
those of UTS. We show that SAFE in the most general case (i.e., ar-
bitrary terms in which all operators are allowed) is NP-complete.
In order to understand how the operators affect the computational
complexity, we consider all sub-algebras in which only some sub-
set of the six operators in {¬, +,u,t,¯,⊗} is allowed. For ex-
ample, SAFE〈¬, +,t,u〉 denotes the sub-case of SAFE where
φ does not contain operators ¯ or ⊗, while SAFE〈⊗〉 denotes
the sub-case of SAFE where ⊗ is the only kind of operator in φ.
SAFE〈¬, +,t,u,¯,⊗〉 denotes the general case.
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Figure 1: Various sub-cases of the Userset-Term Safety (SAFE) problem and the corresponding time-complexity. Time-complexity
of other subcases can be implied from the subcases shown in the figure.

Theorem 2. The computational complexities for SAFE and its sub-
cases are given in Figure 1.

According to Figure 1, the computational complexities of all
subcases of SAFE are the same as those of UTS except for the
subcase in which only operators in {¬, +,t,¯} are allowed.
SAFE〈¬, +,t,¯〉 is in P, while UTS〈t,¯〉 is NP-hard. Intu-
itively, UTS〈t,¯〉 is computationally more expensive than SAFE
{t,¯} for the following reason: given a term φ = (φ1¯· · ·¯φm)
and a userset U , U is safe with respect to φ if and only if U is safe
with respect to φi for every i ∈ [1, m]. In other words, for SAFE,
one may check whether U is safe with respect to φi independently
from φj (i 6= j). However, when it comes to UTS, such indepen-
dency no longer exists and one has to take into account whether
every user in U is used to satisfied some φi in the term φ.

Proofs for the P results in Theorem 2

To prove all the P results in Figure 1, it suffices to prove
that the three cases SAFE〈¬, +,u,t〉, SAFE〈¬, +,t,¯〉, and
SAFE〈¬, +,⊗〉 are in P. We first prove the following lemma,
which will be useful. We need the following definition taken
from [6].

Definition 10. A term is in level-1 canonical form (called a 1CF
term) if it is t or t+, where t is a unit term. Recall that a unit term
can use the operators ¬, u, and t.

Lemma 3. The following Properties hold.

1. A userset X satisfies a unit term t if and only if X is a sin-
gleton set and the only user in X satisfies t.

2. A userset X satisfies a term t+, where t is a unit term, if and
only if every user in X satisfies t.

3. If a userset X satisfies a term φ that uses only ¬, +,u,t,
then every user in X satisfies φ.

4. A userset X is safe with respect to a 1CF term φ if and only
if there exists a user in X that satisfies t.

PROOF. Properties 1 and 2 follow from the definition of term
satisfaction. Observe that a unit term can be satisfied only by a
singleton set.

Property 3. The term φ can be decomposed into subterms in 1CF
form, connected using u and t. By definition, X satisfies φ1 u φ2

if and only if X satisfies both φ1 and φ2, and X satisfies φ1 t φ2

if and only if X satisfies either φ1 or φ2. Identify all 1CF subterms
that X satisfies, it follows from Properties 1 and 2 that each user in
X satisfies all these subterms. Therefore, each user satisfies φ.

Property 4. For the “if” direction, if X contains a user u that
satisfies t, then {u} satisfies the term φ, and thus X is safe with
respect to φ. For the “only if” direction, if X is safe with respect
to φ, then X contains a subset X0 that satisfies φ, any user in X0

must satisfy t according to Properties 1 and 2.

Lemma 4. SAFE 〈¬, +,t,¯〉 is in P.

PROOF. A userset X is safe with respect to (φ1tφ2) if and only
if either X is safe with respect to φ1 or X is safe with respect to φ2.
Furthermore, X is safe with respect to (φ1¯φ2) if and only if X is
safe with respect to both φ1 and φ2. Therefore, one can determine
whether U is safe with respect to φ that uses only the operators in
{¬, +,t,¯} by following the structure of the term until reaching
subterms in 1CF. From Property 4 of Lemma 3, checking whether
U is safe with respect to such a term amounts to checking whether
there exists a user in U that satisfies t, which can be done in poly-
nomial time.

Lemma 5. SAFE 〈¬, +,t,u〉 is in P.

PROOF. Given a term φ using only operators in {¬, +,t,u},
we prove that a userset X is safe with respect to φ if and only if
there exists a user u ∈ X such that u satisfies φ. The “if” direction
follows by definition. For the “only if” direction: Suppose that X
contains a nonempty subset X0 that satisfies φ, then by Property
3 of Lemma 3, every user in X0 satisfies φ; thus X must contain
a user that satisfies φ. Therefore, to determine whether X is safe
with respect to φ, one can, for each user in X , check whether the
user satisfies φ. From [6], checking whether one user satisfies a
term using only operators in {¬, +,t,u} can be done in P.

Lemma 6. SAFE 〈¬, +,⊗〉 is in P.

PROOF. Given a term φ that uses only the operator ⊗, we show
that determining whether a userset X is safe with respect to φ under
a configuration 〈U,UR〉 can be reduced to the maximum matching
problem on bipartite graphs, which can be solved in O(MN) time,
where M is the number of edges and N is the number of nodes in
G [8].

Let s be the number of 1CF terms in φ and t = |X|. Since ⊗
is associative [6], φ can be equivalently expressed as (φ1 ⊗ φ2 ⊗



· · · ⊗ φs), where each φi is a 1CF term . Let X = {u1, · · · , ut}.
We construct a bipartite graph G(V1 ∪ V2, E), where each node
in V1 corresponds to a 1CF term in φ and each node in V2 cor-
responds to a user in X . More precisely, V1 = {a1, · · · , as},
V2 = {b1, · · · , bt}, and (ai, bj) ∈ E if and only if {uj} satisfies
φi. The resulting graph G has s + t nodes and O(st) edges, and
can be constructed in time polynomial in the size of G. Solving the
maximal matching problem for G takes time O((s + t)st).

We now show that X is safe with respect to φ if and only if
the maximal matching in the graph G has size s. If the maximal
matching has size s, then each node in V1 matches to a certain
node in V2, which means that the s 1CF terms in φ are satisfied
by s distinct users in X; thus X contains a subset that satisfies
φ. If X is safe with respect to φ, by definition, there exist s dis-
joint subsets X1, · · · , Xs such that Xi (i ∈ [1, s]) satisfies φi andSs

j=1 Xj ⊆ X . From our construction of G, we may match a node
corresponding to a user in Xi to the node corresponding to φi. In
this case, a maximal matching of size s exists.

Proving the NP-completeness results in Figure 1

It suffices to prove that the general case SAFE〈¬, +,t,u,¯,⊗〉
is in NP and that the four cases SAFE〈u,¯〉, SAFE〈t,⊗〉,
SAFE〈u,⊗〉, and SAFE〈¯,⊗〉 are NP-hard. Below we state lem-
mas that establish these results. The proofs to these lemmas that are
not included in this section are given in Appendix B. For each NP-
hardness result, we discuss the NP-complete problem used in the
reduction.

Lemma 7. SAFE〈¬, +,t,u,¯,⊗〉 is in NP.

PROOF. To determine whether a userset U is safe with respect
to a term φ under a configuration 〈U,UR〉, we first compute the
syntax tree T of φ. When constructing T , a 1CF term is treated as
a unit and is not further decomposed. In other words, the leaves in
T correspond to sub-terms of φ that are 1CF terms and the inner
nodes correspond to binary operators connecting these sub-terms.
If U is safe with respect to φ, then for each node in the tree, there
exists a subset of U that satisfies the term rooted at that node, and
the root of T corresponds to a subset of U . After these subsets
are guessed and labeled with each node, verifying that they indeed
satisfy the terms can be done efficiently. From Lemma 3, verifying
that a userset satisfies a 1CF term is in P. When the two children
of a node are verified, checking that node is labeled correctly can
also be done efficiently. Therefore, the problem is in NP.

In the following, (opkφ) denotes k copies of φ connected to-
gether by operator op and (opn

i=1ri) denotes (r1 op · · · op rn).
Given R = {r1, · · · , rm}, (opR) denotes (r1 op · · · op rm).

Lemma 8. SAFE〈u,¯〉 is NP-hard.

We use a reduction from the NP-complete SET COVERING
problem [4]. The term we constructed for reduction has the form
((
J

k All) u (
Jn

i=1 ri)), where ri is a role.

Lemma 9. SAFE〈¯,⊗〉 is NP-hard.

We use a reduction from the NP-complete DOMATIC NUMBER
problem [4]. The term we constructed for reduction has the form
(
N

k(
Jn

i=1 ri)), where ri is a role.

Lemma 10. SAFE〈⊗,t〉 is NP-hard.

We use a reduction from the NP-complete SET PACKING prob-
lem [4]. The term we constructed for reduction has the form
(
N

k

`Fm
i=1 (

N
Rj)
´
), where Rj is a set of roles.

Lemma 11. SAFE 〈u,⊗〉 is NP-hard.

We use a reduction from the NP-complete SET COVERING
problem. The term we constructed for reduction has the form
(un

i=1(ri ⊗
N

k−1 All)), where ri is a role.

4. COMPUTATIONAL COMPLEXITY
OF SSC

In this section, we study the computational complexity of SSC,
which determines whether a state is safe with respect to a static
safety policy. We will show that SSC in the most general case
(i.e., the policy uses an arbitrary term in which all operators are
allowed) is both NP-hard and coNP-hard, but it is in polynomial
hierarchy coNPNP. A brief introduction on polynomial hierarchy
can be found in Appendix A. Similar to the discussion of SAFE in
Section 3.2, we consider all subcases where only some subset of
the operators in {¬, +,u,t,¯,⊗} is allowed.

Theorem 12. The computational complexities for SSC and its sub-
cases are given in Figure 2.

In the following, we prove that SSC is in coNPNP. The proofs to
those intractable cases in Figure 2 are given in Appendix C. In Sec-
tion 4.1, we identify a class of syntactically restricted terms such
that SSC for policies using these syntactically restricted terms is
tractable. The class of syntactically restricted terms subsumes both
cases listed as in P in Figure 2.

Lemma 13. SSC〈¬, +,t,u,¯,⊗〉 is in coNPNP.

PROOF. We show that the complement of
SSC〈¬, +,t,u,¯,⊗〉 is in NPNP. Because SAFE is in
NP (see Figure 1), an NP oracle can decide whether a userset is
safe with respect to a term. We construct a nondeterministic Oracle
Turing Machine M that accepts an input consisting of a state
〈U,UR,UP〉 and a policy sp〈P, φ〉 if and only if 〈U,UR,UP〉
is not safe with respect to sp〈P, φ〉. M nondeterministically
selects a set U of users in 〈U,UR,UP〉. If U does not cover P ,
then M rejects. Otherwise, M involves the NP oracle to check
whether U is safe with respect to φ. If the oracle answers “yes”,
then M rejects; otherwise, M accepts, as it has found a userset
that covers P but is not safe with respect to φ, which violates
the static safety policy. The construction of M shows that the
complement of SSC〈¬, +,t,u,¯,⊗〉 is in NPNP. Hence,
SSC〈¬, +,t,u,¯,⊗〉 is in coNPNP.

Lemma 14. SSC〈t,¯〉 is coNP-hard.

We reduce the coNP-complete VALIDITY problem for propo-
sitional logic to SSC〈t,¯〉.
Lemma 15. SSC〈u,¯〉 is NP-hard.

PROOF. There is a straightforward reduction from SAFE〈u,¯〉
to SSC〈u,¯〉. Given a term φ using only operators u or ¯, in
order to check whether a userset X is safe with respect to φ, we
can construct a policy sp〈P, φ〉 and a state 〈U,UR,UP〉 such that
X is the only set of users in the state that covers P . In this case,
X is safe with respect to φ if and only if the state we constructed
satisfies sp〈P, φ〉. Since SAFE〈u,¯〉 is NP-hard (see Figure 1),
SSC〈u,¯〉 is NP-hard.

Remind that a reduction from the NP-complete SET COVER-
ING problem is used to prove that SSC〈u,¯〉 is NP-hard. The
term we constructed for the reduction has the form ((

Jm
i=1 φi) u

(
Jn

j=1 φ′j)). Such information on term construction will be useful
in Section 4.1.
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Figure 2: Various sub-cases of the Static Safety Checking (SSC) problem and the corresponding time-complexity. Time-complexity
of other subcases can be implied from the subcases shown in the figure.

Lemma 16. SSC〈⊗〉 is coNP-hard.

We reduce the NP-complete SET COVERING problem to the
complement of SSC〈⊗〉.

4.1 The Most General Tractable Form
From Figure 2, when the operator ⊗ is used or when the oper-

ator ¯ is used in conjunction with any other binary operator, SSC
is intractable in general. In this section, we show that if the term
in a static safety policy satisfies certain syntactic restriction, then
even if all operators except ⊗ appear in the term, one can still effi-
ciently determine whether a state satisfies the policy. Furthermore,
we show that the syntactic restriction presented in this section al-
lows the most general form of terms such that SSC is tractable with
these terms.

Definition 11 (Syntactically Restricted Forms of Terms). The syn-
tactically restricted forms of terms are defined as follows:

• A term is in level-1 syntactically restricted form (called a
1RF term) if it is t or t+, where t is a unit term. Recall that a
unit term can use operators ¬, t and u.

• A term is in level-2 syntactically restricted form (called a
2RF term) if it consists of one or more sub-terms that are
1RF terms, and (when there are more than one such sub-
terms) these sub-terms are connected only by operators in
the set {t,u}.

• A term is in level-3 syntactically restricted form (called a
3RF term) if it consists of one or more sub-terms that are 2RF
terms, and these sub-terms are connected only by operator¯.

We say that a term is in syntactically restricted form if it is in level-3
syntactically restricted form. Observe that any term that is in level-
i syntactically restricted form is also in level-(i + 1) syntactically
restricted form for any i = 1 or 2.

Theorem 17. Given an access control state 〈U,UR,UP〉 and a
static safety policy sp〈P, φ〉 where φ is in syntactically restricted
form, checking whether 〈U,UR,UP〉 satisfies φ can be done in
polynomial time.

PROOF. Let φ = (φ1 ¯ · · · ¯ φm) be a 3RF term, where
φi (1 ≤ i ≤ m) is a 2RF term. The following algorithm checks
whether a state 〈U,UR,UP〉 satisfies a policy sp〈P, φ〉, where
P = {p1, · · · , pn}.

isSafe(P, φ, UR, UP)
begin

Γ = {φ1, · · · φm};
For every pi in {p1, · · · , pn} do

Gpi = ∅;
For every u ∈ U such that (u, pi) ∈ UP do

Gpi = Gpi ∪
{ φi ∈ φ | {u} does not satisfy φi};

EndFor;
Γ = Γ ∩ Gpi;

EndFor;
if (Γ == ∅) return true;
else return false;

end

In the above algorithm, Gpi stores the set of 2RF sub-terms in φ
such that there exists a user u having pi but {u} does not satisfy
the sub-term. At the end of the algorithm, on the one hand, if Γ
contains a sub-term φi, it means that for every permissions pj in
{p1, · · · , pn}, there exists a user upj such that upj has permission
pj but {upj} does not satisfy φi. Furthermore, from Property 3 of
Lemma 3, the fact that {upj} does not satisfy φi implies that any
superset of {upj} does not satisfy φi. (Note that 2RF terms use
only the operators¬, +,t,u.) Therefore, users in {up1 , · · · , upn}
together have all permissions in {p1, · · · , pn} but does not contain
a subset that satisfies φi, and hence does not contain a subset that
satisfies φ. The state is not safe. On the other hand, Γ = ∅ indicates
that if U covers permissions in {p1, · · · , pn}, then for every sub-
term φi, there exists u ∈ U such that {u} satisfies φi. In other
words, there exists U ′ ⊆ U such that U ′ satisfies φ′. The state is
safe.

The worst-case time complexity of the above algorithm is
O(m × |U | × T ), where T is the time taken to check whether
a singleton satisfies a 1RF term, which is known to be in P [6].

Finally, we would like to show that level-3 syntactically re-
stricted form is the most general syntactic form of terms that keeps
SSC tractable. Fist of all, from Lemma 16, if ⊗ is allowed, SSC
becomes intractable. Furthermore, from the proof of Lemma 15, if
u is allowed to connect sub-terms containing ¯, SSC becomes in-
tractable. Finally, in the proof of Lemma 14, the coNP-complete
validity problem is reduced to SSC〈t,¯〉. Since checking valid-
ity for propositional logic formula in disjunct normal form (DNF)
remains coNP-complete, SSC is intractable when t is allowed
to connect sub-terms containing ¯. In summary, to make SSC
tractable, operator ⊗ cannot be used, and if ¯ is used, it must ap-



pear “outside of” t and u. Such a restriction is precisely captured
by the level-3 syntactically restricted form.

5. AN ALGORITHM FOR SSC

Despite the fact that SSC is intractable in general, it is still possi-
ble that many instances encountered in practice are efficiently solv-
able. In order to study the efficiency of solving SSC, we have de-
signed and implemented an algorithm, which is described in detail
in this section.

5.1 Description of the Algorithm
To determine whether 〈U,UR,UP〉 is safe with respect to

sp〈P, φ〉, a straightforward algorithm is to enumerate all usersets
that cover P and for every such userset, check whether it has a sub-
set that satisfies φ. If the answer is “no” for any such userset, then
we know that 〈U,UR,UP〉 is not safe with respect to sp〈P, φ〉.
Otherwise, 〈U,UR,UP〉 is safe. Our algorithm is based on this
idea but has a number of improvements that greatly reduces the
running time. Here is a summary of the improvement techniques
in our algorithm on determining whether 〈U,UR,UP〉 is safe with
respect to sp〈P, φ〉.

• We preprocess the input and eliminates information in
〈U,UR,UP〉 that is irrelevant to the result of static safety
checking with respect to sp〈P, φ〉.

• Only minimal usersets that cover P will be checked for
userset-term safety.

• We define a partial-order over sets of roles and perform static
pruning to reduce the number of users that need to be consid-
ered based on the partial-order over their role membership.

• We propose an abstract representation of sets which enables
us to design an efficient bottom-up approach for determining
userset-term safety.

In the rest of this section, for simplicity of discussion, the key-
word All and user names in a term of the algebra are also treated as
roles. For instance, we may treat the atomic term Alice as a role
such that user Alice is the only member of the role, while All is
treated as a role such that everybody in the system is its member.

Preprocessing Given a state 〈U,UR,UP〉 and a policy sp〈P, φ〉,
we first remove all pairs (u, p) from UP if p 6∈ P , and all pairs
(u, r) from UR if r does not appear in φ. We also remove all users
u from U if u does not have any permission in P .

Furthermore, we rewrite the term φ into an equivalent term
where ¬ (if any) only applies to atomic term. Such a rewriting
is always possible, as the operators ¬,t and u satisfy the DeMor-
gan’s Law. (See [6] for algebraic properties of the operators.) This
will be useful in static pruning, which will be discussed later.

Minimal Usersets Only Given a policy sp〈P, φ〉, let X be a user-
set that covers P . It is clear that a superset of X covers P as well.
If X is safe with respect to φ, then any superset of X is safe with
respect to φ, but not the other way around. Therefore, when con-
sidering whether the state satisfies sp〈P, φ〉, we may consider X
without considering the supersets of X . In other words, we check
whether X satisfies φ if and only if X covers P and there does
not exist X ′ ⊂ X such that X ′ covers P , and such a userset X is
called a minimal userset that covers P .

Static Pruning The number of all usersets in U is 2n, where
|U| = n. But it is clear that not all these subsets need to be consid-
ered. In particular, we are only interested in those minimal usersets
that cover all permissions in the policy. In the following, we de-
scribe a static pruning technique that aims at reducing the number

of users that need to be taken into account. Intuitively, given a pol-
icy sp〈P, φ〉, we try to ignore those users who have a relatively
small number of permissions in P but satisfy many atomic terms in
φ.

Definition 12 (Positive and Negative Dependance). We say that a
term φ positively (or negatively) depends on role r, if φ contains
r (or ¬r). Rpos and Rneg denote the set of roles that φ positively
and negatively depends on, respectively.

For instance, if φ = (Accountant ¯ Clerk) ∪ (¬Manager u
¬Clerk), then Rpos = {Accountant, Clerk} and Rneg =
{Manager, Clerk}. Note that Clerk appears in both Rpos and
Rneg . Definition 13 defines a partial relation between role sets
with respect to a term, and Lemma 18 states a condition on which a
user may be ignored without affecting the soundness of static safety
checking.

Definition 13 (Partial-Order ¹φ). Given a term φ and two sets of
roles Ra and Rb, we have Ra ¹φ Rb (or equivalently Rb ºφ Ra)
if and only if Ra∩Rpos ⊆ Rb∩Rpos and Ra∩Rneg ⊇ Rb∩Rneg .

Note that the relation ¹φ is transitive, i.e. if R1 ¹φ R2 and
R2 ¹φ R3, then R1 ¹φ R3.

Lemma 18. Given a policy sp〈P, φ〉, a state 〈U,UR,UP〉 and
two users u1, u2 (u1 6= u2), let Pi and Ri be the set of permissions
and roles of ui (i = 1 or 2). If (P1 ∩ P ) ⊇ (P2 ∩ P ) and R1 ¹φ

R2, then 〈U,UR,UP〉 is safe with respect to sp〈P, φ〉 if and only
if 〈U/{u2},UR,UP〉 is safe with respect to sp〈P, φ〉. In other
words, u2 may be ignored without affecting the soundness of static
safety checking.

PROOF. Let X be a userset covering P . In the following, we
prove that if u2 ∈ X , we can always find another userset X ′ (u2 6∈
X ′) that covers P , and X is safe with respect to φ only if X ′ is
safe with respect to φ. Hence, we may consider X ′ and ignore
X , which indicates that u2 may be ignored without affecting the
soundness of static safety checking.

On the one hand, assume that both u1 and u2 are in X . Since
(P1 ∩P ) ⊇ (P2 ∩P ), X ′ = X/{u2} still covers P and X ′ ⊂ X .
Hence, if X ′ is safe with respect to φ, so is X .

On the other hand, assume that u2 ∈ X but u1 6∈ X . Let
X ′ = (X/{u2})∪u1. X covering P and (P1∩P ) ⊇ (P2∩P ) im-
ply that X ′ covers P . We would like to show that if X ′ is safe with
respect to φ, then so is X . Assume that X ′ contains a subset X ′

1

that satisfies φ. We are only interested in the case where u1 ∈ X ′
1.

By definition of term satisfaction, X ′
1 satisfying φ indicates that

{u1} is used to satisfy a set of atomic terms and/or negation of
atomic terms in φ. (Note that ¬ is only applied to atomic terms
in φ after preprocessing.) Let {γ1, · · · , γm} (m ≥ 1) be a set of
atomic terms or negation of atomic terms in φ such that {u1} satis-
fies γi (1 ≤ i ≤ m). If γi = r, then u1 must be a member of role
r, which means that r ∈ R1. R1 ¹φ R2 indicates that r ∈ R2.
Otherwise, if γi = ¬r, then r 6∈ R1. R1 ¹φ R2 indicates that
r 6∈ R2. In either case, {u2} satisfies γi. In general, {u2} satisfies
all elements in {γ1, · · · , γm}. Therefore, X = (X ′/{u1})∪{u2}
satisfies φ. In generale, we may only consider X ′ without consid-
ering X .

The above lemma may greatly reduce the number of users we
need to consider. In particular, if multiple users have the same set
of permissions in P and roles in φ, then at most one of these users
need to be taken into account.

The following example illustrates how static punning works.



Example 1. Given a policy sp〈{p1, p2, p3}, (r1¯¬r2)〉 and a state
〈U,UR,UP〉, we have

U ={Alice,Bob,Carl ,Doris,Elaine}
UP ={(Alice, p1), (Alice, p2), (Bob, p1), (Carl , p1),

(Carl , p2), (Doris, p3), (Elaine, p3), (Elaine, p4)}
UR ={(Alice, r1), (Bob, r1), (Bob, r3), (Carl , r1), (Carl , r2)}
There are five users in the system altogether. However, according
to Lemma 18, we only need to consider two users Carl and Doris .
First of all, Bob may be ignored as he has the same set of roles
in {r1, r2} as Alice , but his set of permissions is subsumed by
Alice’s. Secondly, Alice does not need to be considered as she has
the same set of permissions as Carl , but RCarl ¹(r1¯¬r2) RAlice .
Finally, since Doris and Elaine have the same permissions and
roles with respect to the given policy, only one of them should be
taken into account.

Determining Term Safety In [6], Li and Wang described an al-
gorithm for the Userset-Term Satisfaction (UTS) problem. Their
algorithm employs both a top-down approach and a bottom-up ap-
proach based on the syntax tree of the term. In the top-down ap-
proach, one starts with the root of the syntax tree and the given
userset and tries to split the userset into subsets so as to satisfy
different sub-terms. The processing is then performed recursively
on those subsets and sub-terms. In the bottom-up processing, one
starts with unit terms. For each unit term, one calculates all subsets
of the given userset that satisfy the term. One then goes bottom-up
to calculate that for each node in the syntax tree. We call the set
of usersets that satisfy a term the satisfaction set of the term. An
example of bottom-up processing of a term in a given configuration
is given in Figure 3.

As to SSC, instead of determining whether a userset satisfies
a term, we are only interested in whether there exists a subset of
userset X that satisfies the term. In this case, using a pure bottom-
up design should be more efficient than a combination of top-down
and bottom-up processing.

A major challenge for bottom-up processing is that the number
of subsets that satisfy a sub-term may be very large, especially
when + is used. The algorithm for UTS in [6] stops performing
bottom-up processing when + is encountered, as the sub-term t+

can be satisfied by 2|Y | − 1 usersets, where t is a unit term and
Y = {u ∈ U | {u} satisfies t}.

In our algorithm for SSC, we introduce a novel abstract represen-
tation of sets, which greatly reduces the number of elements gen-
erated during the computation. Intuitively, an abstract set is a set
of sets and is represented as a pair of two disjoint sets, the explicit-
element set (EES) and the possible-element set (PES), where EES
contains elements that must appear and PES contains elements
that may or may not appear. For example, an abstract userset
〈ees{Alice} :: pes{Bob,Carl}〉 indicates that Alice appears
in the set for sure, while Bob and Carl may be included in the set
as well. In other words, 〈ees{Alice} :: pes{Bob,Carl}〉 is a set
of four different usersets, {Alice }, {Alice ,Bob }, {Alice ,Carl }
and {Alice ,Bob,Carl }.

Definition 14 (Abstract Set). An abstract set is given as a pair
Ψ = 〈ees{a1, · · · , am} :: pes{b1, · · · , bn}〉 (m ≥ 1, n ≥
0), which stands for a set of sets. Ψ.ees = {a1, · · · , am}
is the explicit-element set of Ψ and Ψ.pes = {b1, · · · , bn} is
the possible-element set of Ψ. A set S is in Ψ if and only if
{a1, · · · , am} ⊆ S ⊆ {a1, · · · , am} ∪ {b1, · · · , bn}.

Abstract sets are especially useful in representing satisfaction
sets of terms containing sub-terms in the form of t+. For example,

assume that Alice , Bob and Carl are members of role r. The set
of usersets that satisfy r+ may be represented as {〈ees{Alice} ::
pes{Bob,Carl}〉, 〈ees{Bob} :: pes{Carl}〉, 〈ees{Carl} ::

pes{}〉}. In general, |Y | rather than 2|Y | − 1 usersets are stored
for t+, where t is a unit term and Y = {u ∈ U | {u} satisfies t}.

Our bottom-up approach employs abstract sets and involves per-
forming set operations over abstract sets. The description of our
bottom-up approach is given in Lemma 19.

Lemma 19. Given a userset X and a term φ, the satisfaction set
Ψφ of φ can be computed as follows. Initially, Ψφ = ∅.

• φ = r: For every u ∈ (X ∧ Xr), where Xr is the set
members of r, Ψφ ← Ψφ ∪ {〈ees{u} :: pes{}〉}.

• φ = ¬φ1: For every u ∈ X , if @α∈Ψφ1
({u} = α.ees),

Ψφ ← Ψφ ∪ {〈ees{u} :: pes{}〉}.

• φ = φ+
1 : Let Xs = {u | ∃α∈Ψφ1

(α.ees = {u})} =

{ua1 · · ·uam}, where ai (i ∈ [1, m]) is an integer and
ai < aj when i < j. For every i ∈ [1, m], Ψφ ←
Ψφ ∪ {〈ees{uai} :: pes{uai+1 , · · · , uam}〉}.

• φ = φ1 u φ2: For every α ∈ Ψφ1 and every β ∈ Ψφ2 ,
if α.ees ⊆ β.ees ∪ β.pes and β.ees ⊆ α.ees ∪ α.pes,
then Ψφ ← Ψφ ∪ {〈ees{α.ees ∪ β.ees} :: pes{α.pes ∩
β.pes}〉}.

• φ = φ1 t φ2: Ψφ ← Ψφ1 ∪Ψφ2 .

• φ = φ1 ¯ φ2: For every α ∈ Ψφ1 and every β ∈ Ψφ2 ,
Ψφ ← Ψφ ∪ {〈ees{E} :: pes{P − E}〉}, where E =
α.ees ∪ β.ees and P = α.pes ∪ β.pes.

• φ = φ1 ⊗ φ2: For every α ∈ Ψφ1 and every β ∈ Ψφ2 ,
if α.ees ∩ β.ees = ∅, then Ψφ ← Ψφ ∪ {〈ees{E} ::
pes{P−E}〉}, where E = α.ees∪β.ees and P = α.pes∪
β.pes.

Due to page limit, the proof of correctness of our bottom-up ap-
proach is given in the technical report version of this paper [13].

Besides making use of abstract sets to represent satisfaction sets
of terms, an additional technique is used to further accelerate the
bottom-up processing. Given a term φ, we are only interested in
whether the satisfaction set of φ is empty or not. To acquire such
information, it is sometimes unnecessary to compute the satisfac-
tion set for every sub-term of φ. In particular, if the satisfaction
sets of both φ1 and φ2 are not empty, then the satisfaction sets of
φ+

1 , φ1 tφ2 and φ1¯φ2 are not empty; if either of the satisfaction
sets of φ1 and φ2 is not empty, then the satisfaction set of φ1 t φ2

is not empty. Hence, we need to compute the exact satisfaction set
for a sub-term only if it is an atomic term or the path from the node
corresponding to the sub-term to the root of the syntax tree contains
operators ¬, u or ⊗. For all other sub-terms, we just need to mark
whether the satisfaction set is empty or not. For example, given
term (r1 ⊗ r2) ¯ (r3 t ¬r4), we just need to explicitly compute
the satisfaction sets for sub-terms (r1 ⊗ r2), r3 and ¬r4.

5.2 Implementation and Evaluation
We prototyped the algorithm described in Section 5.1 and have

performed some experiments. Our prototypes are written in Java,
and our experiments were carried out on a Workstation with a
3.2GHz Pentium 4 CPU and 512MB RAM. The parameters we
used in our experiments are chosen to be close to practical cases.
In particular, the number of permissions involved in a task will not
be very large and the term used in the policy will not be very com-
plicated. However, the number of users in the system may be large.
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Figure 3: An example of the bottom-up process. Let φ = ((r1 t r2) ⊗ (r2 u (¬r3)

+)). In configuration
〈U,UR〉, UR = {(Alice, r2), (Bob, r1), (Bob, r3), (Carl , r1), (Doris, r2), (Doris, r3)}. For each sub-term of φ, the subsets of
{Alice,Bob,Carl ,Doris} that satisfies that sub-term is displayed.

Some of our experimental results are presented in Table 1. As we
can see in Table 1, our algorithm solves SSC efficiently when the
number of users is small. The algorithm does not scale very well
when the number of users grows. However, it is still capable to
solve SSC instances with nontrivial size in a relatively short time.
As SSC needs to be performed only when the access control state
of the system changes, which is not expected to happen frequently,
relative slow running time may be acceptable in some situations.
Further research is needed on improving the performance of the
algorithm and on assessing whether solving SSC is practical in real-
world scenarios.

6. RELATED WORK
The concept of SoD has long existed in the physical world, some-

times under the name “the two-man rule” in the banking industry
and the military. To our knowledge, in the information security lit-
erature the notion of SoD first appeared in Saltzer and Schroeder [9]
under the name “separation of privilege.” Clark and Wilson’s com-
mercial security policy for integrity [1] identified SoD along with
well-formed transactions as two major mechanisms of fraud and er-
ror control. There exists a wealth of literatures [7, 10, 11, 5] on the
enforcement of SoD policies. Nash and Poland [7] explained the
difference between dynamic and static enforcement of SoD poli-
cies. In the former, a user may perform any step in a sensitive
task provided that the user does not also perform another step on
that data item. In the latter, users are constrained a-priori from
performing certain steps. Foley [3] proposed a framework based
on relabel policies [2] to express dynamic SoD requirements. Sol-
worth [12] introduced a graph-based mechanism to describe and
analyze dynamic SoD policies. Sandhu [10, 11] presented Trans-
action Control Expressions, a history-based mechanism for dynam-
ically enforcing SoD policies. A transaction control expression as-
sociates each step in the transaction with a role. By default, the
requirement is such that each step must be performed by a different
user. One can also specify that two steps must be performed by the
same user. In Transaction Control Expressions, user qualification
requirements are associated with individual steps in a transaction,
rather than a transaction as a whole.

Li et al [5] studied both direct and indirect enforcement of static
separation of duty (SSoD) policies. They showed that directly en-
forcing SSoD policies is intractable (NP-complete). They also
discussed using static mutually exclusive roles (SMER) constraints
to indirectly enforce SSoD policies. They defined what it means
for a set of SMER constraints to precisely enforce an SSoD policy,
characterize the policies for which such constraints exist, and show
how they are generated. Our paper studies the enforcement of a
larger class of policies, which include SoD policies as a sub-class;

however, we focus on direct static enforcement.
Our paper studies enforcement of policies specified in the alge-

bra introduced by Li and Wang [6]. They mentioned static enforce-
ment and dynamic enforcement as two possible enforcement mech-
anisms for high-level security policies specified in the algebra, but
they did not investigate enforcement in detail.

7. CONCLUSION
In this paper, we have formally defined and studied direct static

enforcement of high-level security policies specified in the algebra
proposed by Li and Wang [6]. We have given comprehensive com-
putational complexity results for solving the Static Safety Check-
ing problem and the related Userset-Term Safety problem. We have
also proposed a syntactically restricted form of terms such that if
the term in a policy satisfies the syntactic restriction, the direct en-
forcement of the policy is tractable. Finally, we have designed and
evaluated an algorithm to solve the static safety checking problem
for high-level security policies.

In the future, we plan to study other enforcement approaches for
policies specified in the algebra, including indirect static enforce-
ment, which uses constraints to rule out unsafe states, and dynamic
enforcement, which enforces the policy using history for each in-
stance of a sensitive task.
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APPENDIX
A. BACKGROUND ON ORACLE TURING

MACHINES AND POLYNOMIAL HIER-
ARCHY

Oracle Turing Machines An oracle Turing machine, with an or-
acle for accepting a language L, is denoted as ML. ML can use the
oracle to determine whether a string is in L or not in one step. More
precisely, ML is a two-tape deterministic Turing machine. The ex-
tra tape is called the oracle tape. ML has three additional states:
the query state q?, and two answer states qyes and qno . The compu-
tation of ML proceeds like in any ordinary Turing machine, except
for transitions from q?. When ML enters q?, it checks whether the
contents of the oracle tape are in L. If so, ML moves to qyes . Oth-
erwise, ML moves to qno . In other words, ML is given the ability
to “instantaneously” determine whether a string is in L or not.

Polynomial Hierarchy The polynomial hierarchy provides
a more detailed way of classifying NP-hard decision prob-
lems. The complexity classes in this hierarchy are denoted by
ΣkP, ΠkP, ∆kP, where k is a nonnegative integer. They are
defined as follows:

Σ0P = Π0P = ∆0P = P,
and for all k ≥ 0,

∆k+1P = PΣkP,
Σk+1P = NPΣkP,
Πk+1P = co-Σk+1P = coNPΣkP.

Some classes in the hierarchy are

∆1P = P , Σ1P = NP , Π1P = coNP,
∆2P = PNP, Σ2P = NPNP,
Π2P = coNPNP.

B. PROOF OF THEOREM 2
In the following proofs, (opkφ) denotes k copies of φ connected

together by operator op and (opn
i=1ri) denotes (r1 op · · · op rn).

Given R = {r1, · · · , rm}, (opR) denotes (r1 op · · · op rm).
Proof of Lemma 8: SAFE〈u,¯〉 is NP-hard.

PROOF. We use a reduction from the NP-complete SET COV-
ERING problem [4]. In the set covering problem, we are given a
family F = {S1, · · · , Sm} of subsets of a finite set S and an in-
teger k no larger than m, and we ask whether there are k sets in
family F whose union is S.

Given S = {e1, · · · , en} and a family of S’s subsets F =
{S1, · · · , Sm}, we construct a configuration 〈U,UR〉 such that
(ui, rj) ∈ UR if and only if ej ∈ Si. Let U = {u1, · · · , um}
and φ = ((

J
k All) u (

Jn
i=1 ri)).

We now demonstrate that U is safe with respect to φ under
〈U,UR〉 if and only if there are no more than k sets in family F
whose union is S.

If U is safe with respect to φ, by definition, a subset U ′ of U
satisfies (

J
k All) and (

Jn
i=1 ri). U ′ satisfying (

J
k All) indi-

cates that |U ′| ≤ k, while U ′ satisfying (
Jn

i=1 ri) indicates that
users in U ′ together have membership of ri for every i ∈ [1, n].
Without loss of generality, suppose U ′ = {u1, · · · , ut}, where
t ≤ k. Since (ui, rj) ∈ UR if and only if ej ∈ Si, the union
of {S1, · · · , St} is S. The answer to the set covering problem is
“yes”.

On the other hand, without loss of generality, assume thatSk
i=1 Si = S. From the construction of UR, users u1, · · · , uk

together have membership of ri for every i ∈ [1, n], which indi-
cates that {u1, · · · , uk} is safe with respect to (

Jn
i=1 ri). Also,

any non-empty subset of {u1, · · · , uk} satisfies (
J

k All). Hence,
U is safe with respect to φ.

Proof of Lemma 9: SAFE〈¯,⊗〉 is NP-hard.

PROOF. We use a reduction from the NP-complete DOMATIC
NUMBER problem [4]. Given a graph G(V, E), the Domatic Num-



ber problem asks whether V can be partitioned into k disjoint sets
V1, V2, · · · , Vk, such that each Vi is a dominating set for G. V ′ is
a dominating set for G = (V, E) if for every node u in V − V ′,
there is a node v in V ′ such that (u, v) ∈ E.

Given a graph G = (V, E) and a threshold k, let U =
{u1, u2, · · · , un} and R = {r1, r2, · · · , rn}, where n is the num-
ber of nodes in V . Each user in U corresponds to a node in G, and
v(ui) denotes the node corresponding to user ui. UR = {(ui, rj) |
i = j or (v(ui), v(uj)) ∈ E}. Let φ = (

N
k(
Jn

i=1 ri)).
A dominating set in G corresponds to a set of users that to-

gether have membership of all the n roles. U is safe with re-
spect to φ if and only if U has a subset U ′ that can be divided
into k pairwise disjoint sets, each of which have role membership
of r1, r2, · · · , rn. Therefore, the answer to the Domatic Number
problem is “yes” if and only if U is safe with respect to φ.

Proof of Lemma 10: SAFE〈⊗,t〉 is NP-hard.
PROOF. We use a reduction from the NP-complete SET PACK-

ING problem [4], which asks, given a family F = {S1, · · · , Sm}
of subsets of a finite set S and an integer k, whether there are k
pairwise disjoint sets in family F . Without loss of generality, we
assume that Si 6⊆ Sj if i 6= j.

Given S = {e1, · · · , en} and a family of S’s subsets F =
{S1, · · · , Sm}, let U = {u1, · · · , un}, R = {r1, · · · , rn} and
UR = {(ui, ri) | 1 ≤ i ≤ n}. We then construct a term
φ = (

N
k

`Fm
i=1 (

N
Rj)
´
), where Rj = {ri | ei ∈ Sj}. We

show that U is safe with respect to φ under 〈U,UR〉 if and only if
there are k pairwise disjoint sets in family F .

As the only member of ri is ui, the only userset that satisfies
φi = (

N
Rj) is Uj = {ui | ei ∈ Sj}. A userset X satisfies

φ′ = (
Fm

i=1 φi) if and only if X equals to some Uj .
Without loss of generality, assume that S1, · · · , Sk are k pair-

wise disjoint sets. Then, U1, · · · , Uk are k pairwise disjoint sets of
users. U1 satisfies φ1, and thus satisfies φ′. Similarly, we have Ui

satisfies φ′ for every i from 1 to k. Since Ui ⊆ U , U is safe with
respect to φ.

On the other hand, suppose U is safe with respect to φ. Then,
U has a subset U ′ that can be divided into k pairwise disjoint sets
Û1, · · · , Ûk, such that Ûi satisfies φi. In order to satisfy φ′, Ûi

must satisfy a certain φai and hence be equivalent to Uai . The
assumption that Û1, · · · , Ûk are pairwise disjoint indicates that
Ua1 , · · · , Uak are also pairwise disjoint. Therefore, their corre-
sponding sets Sa1 , · · · , Sak are pairwise disjoint. The answer to
the Set Packing problem is “yes”.

Proof of Lemma 11: SAFE 〈u,⊗〉 is NP-hard.
PROOF. We use a reduction from the NP-complete SET COV-

ERING problem, which asks, given a family F = {S1, · · · , Sm} of
subsets of a finite set S and an integer k no larger than m, whether
there are k sets in family F whose union is S.

Given S = {e1, · · · , en} and a family of S’s subsets F =
{S1, · · · , Sm}, let U = {u1, u2, · · · , um}, R = {r1, r2, · · · , rn}
and UR = {(ui, rj) | ej ∈ Si}. Let φ = (un

i=1(ri ⊗N
k−1 All)). We now demonstrate that U satisfies φ under 〈U,UR〉

if and only if there are k sets in family F whose union is S.
If U is safe with respect to φ, by definition, a subset U ′ of U sat-

isfies (ri⊗
N

k−1 All) for every i, which means users in U ′ together
have membership of ri for every i ∈ [1, n]. For any i ∈ [1, n],
U ′ satisfying (ri ⊗

N
k−1 All) indicates that |U ′| = k. Suppose

U ′ = {ua1 , · · · , uak}. As (ui, rj) ∈ UR if and only if ej ∈ Si,
the union of {Sa1 , · · · , Sak} is S. The answer to the Set Covering
problem is “yes”.

On the other hand, without loss of generality, assume thatSk
i=1 Si = S. From the construction of UR, users u1, · · · , uk

together have membership of ri for every i ∈ [1, n], which indi-
cates that {u1, · · · , uk} satisfies φi for every i ∈ [1, n]. Hence,
{u1, · · · , uk} satisfies φ and U is safe with respect to φ.

C. PROOF OF THEOREM 13
Proof of Lemma 14: SSC〈t,¯〉 is coNP-hard.

PROOF. We reduce the coNP-complete VALIDITY problem
for propositional logic to SSC〈t,¯〉. Given a propositional logic
formula ϕ in disjunctive normal form, let {v1, · · · , vn} be the set
of propositional variables in ϕ.

We create a state 〈U,UR,UP〉 with n permissions
p1, p2, · · · , pn, 2n users u1, u

′
1, u2, u

′
2, · · · , un, u′n, and 2n roles

r1, r
′
1, r2, r

′
2, · · · , rn, r′n. We have UP = {(ui, pi), (u

′
i, pi) |

1 ≤ i ≤ n} and UR = {(ui, ri), (u
′
i, r

′
i) | 1 ≤ i ≤ n}. We also

construct a term φ from the formula ϕ by replacing each literal vi

with ri, each literal ¬vi with r′i, each occurrence of ∧ with ¯ and
each occurrence of ∨ with t.

Note that X is safe with respect to φ1tφ2 if and only if X is safe
respect to either φ1 or φ2, and X is safe with respect to φ1 ¯ φ2 if
and only if X is safe respect to both φ1 and φ2. Thus the logical
structure of φ follows that of ϕ.

We now show that the formula ϕ is valid if and
only if 〈U,UR,UP〉 is safe with respect to the policy
sp〈{p1, p2, · · · , pn}, φ〉. On the one hand, if the formula
ϕ is not valid, then there is an assignment I that makes
it false. Using the assignment, we construct a userset
X = {ui | I(vi) = true} ∪ {u′i | I(vi) = false}. X cov-
ers all permissions in P , but X is not safe with respect to φ.
On the other hand, if 〈U,UR,UP〉 is not safe with respect to
sp〈{p1, p2, · · · , pn}, φ〉, then there exists a set X of users that
covers P but X is not safe with respect to φ. In order to cover all
permissions in P , for each i ∈ [1, n], at least one of ui, u

′
i is in

X . Without loss of generality, assume that for each i, exactly one
of ui, u

′
i is in X . (If both ui, u

′
i are in X , we can remove either

one, the resulting set is a subset of X and still covers P .) Then
we can derive a truth assignment I from X by assigning p1 to true
if ui ∈ X and to false if u′i ∈ X . Then the formula evaluates to
false, because X is not safe with respect to φ.

Proof of Lemma 16: SSC〈⊗〉 is coNP-hard.

PROOF. We can reduce the NP-complete SET COVERING
problem to the complement of SSC〈⊗〉. In Set Covering problem,
we are given a family F = {S1, · · · , Sm} of subsets of a finite set
S = {e1, · · · , en} and a budget K, where K is an integer smaller
than m and n. We are asking for a set of K sets in F whose union
is S.

Given an instance of the Set Covering problem, construct a state
〈U,UR,UP〉 such that UR = {(ui, ri) | i ∈ [1, m]} and UP =
{(ui, pj) | ej ∈ Si}. Construct a safety policy sp〈P, φ〉, where
P = {p1, · · · , pn} and φ = (

N
K+1 All). φ is satisfied by any set

of no less than K + 1 users.
On the one hand, if 〈U,UR,UP〉 is safe, no K users together

have all permissions in P . In this case, since ui corresponds to Si,
there does not exist K sets in F whose union is S. The answer to
the Set Covering problem is “no”.

On the other hand, if 〈U,UR,UP〉 is not safe, there exist a set
of no more than K users together have all permissions in P . Ac-
cordingly, the answer to the Set Covering problem is “yes”.

Since the Set Covering problem is NP-complete, we conclude
that the complement of SSC〈⊗〉 is NP-hard. Hence, SSC〈⊗〉 is
coNP-hard.


