
On Mutually-Exclusive Roles and Separation of Duty

Ninghui Li
ninghui@cs.purdue.edu

Ziad Bizri
zelbizri@cs.purdue.edu

Mahesh V. Tripunitara
tripunit@cerias.purdue.edu

Center for Education and Research in Information Assurance and Security
and Department of Computer Sciences

Purdue University
656 Oval Drive, West Lafayette, IN 47907

ABSTRACT
Separation of Duty (SoD) is widely considered to be a fundamental
principle in computer security. A Static SoD (SSoD) policy states
that in order to have all permissions necessary to complete a sensi-
tive task, the cooperation of at least a certain number of users is re-
quired. In Role-Based Access Control (RBAC), Statically Mutually
Exclusive Role (SMER) constraints are used to enforce SSoD poli-
cies. In this paper, we pose and answer fundamental questions re-
lated to the use of SMER constraints to enforce SSoD policies. We
show that directly enforcing SSoD policies is intractable (coNP-
complete), while checking whether an RBAC state satisfies a set
of SMER constraints is efficient. Also, we show that verifying
whether a given set of SMER constraints enforces an SSoD policy
is intractable (coNP-complete) and discuss why this intractability
result should not lead us to conclude that SMER constraints are not
an appropriate mechanism for enforcing SSoD policies. We show
also how to generate SMER constraints that are as accurate as pos-
sible for enforcing an SSoD policy.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Access con-
trols; K.6.5 [Management of Computing and Information Sys-
tems]: Security and Protection; F.2.2 [Analysis of Algorithms
and Problem Complexity]: Nonnumerical Algorithms and Prob-
lems—Complexity of proof procedures

General Terms
Security, Theory

Keywords
role-based access control, separation of duty, constraints, verifica-
tion

1. INTRODUCTION
Separation of Duty(SoD) is widely considered to be a funda-

mental principle in computer security [2, 3, 17]. In its simplest

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’04,October 25-29, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-961-6/04/0010 ...$5.00.

form, the principle states that if a sensitive task is comprised of two
steps, then different users should each perform each step. More
generally, when a sensitive task is comprised ofn steps, an SoD
policy requires the cooperation of at leastk (for somek ≤ n) dif-
ferent users to complete the task.

Consider the following example of buying and paying for goods,
taken from [3]. The steps to perform such a task are: (1) ordering
the goods and recording the details of the order; (2) recording the
arrival of the invoice and verifying that the details on the invoice
match the details of the order; (3) verifying that the goods have
been received, and the features of the goods match the details on the
invoice; and (4) authorizing the payment to the supplier against the
invoice. We would want to ensure that payment is not released on
an order that was never placed, and that the received goods match
those in the order and those in the invoice. A policy that requires
a different user to perform each step may be too restrictive. It may
be permissible, for instance, that the user who places the order also
records the arrival of the invoice. One may require that (a) at least
three users’ cooperation is needed to perform all four steps, and (b)
two different users perform steps (1) and (4) (i.e., no single user
can order goods and authorize payment for them).

An SoD policy may be enforced either statically or dynamically.
In dynamic enforcement, the system maintains a history of each
task instance (e.g., a particular order in the above example). The
history includes information on who performed each step. Before
a user performs a step on the instance, the system checks to ensure
that the SoD policy is not violated. This is referred to as Dynamic
SoD in the literature [18, 15]. (Nash and Poland [15] refer to this
as object SoD and consider it as a kind of Dynamic SoD.) In Dy-
namic SoD, a user may be able to perform a particular step in a task
instance; however, the user cannot also perform other steps in that
instance.

In static enforcement, Static SoD (SSoD) policies are specified.
Each SSoD policy states that nok − 1 users together have all per-
missions to complete a sensitive task. Such an SSoD policy can
be enforced by carefully assigning permissions to users, without
maintaining a history for every task instance. It may seem that if an
SSoD policy is satisfied, then the corresponding SoD policy is also
satisfied. However, care must be taken to ensure this. Consider the
example described above. Suppose that initially a user Bob has the
permission to order goods. After placing an order, Bob’s order per-
mission is revoked and then Bob is assigned to have the permission
to authorize payments. Now Bob can authorize a payment against
the order he placed earlier. The SoD policy is violated even though
Bob never has the order permission and payment permission at the
same time. Such situations can be avoided, for example, by requir-
ing that a user is not participating in any active task instance while

being assigned a permission, or by treating such task instances spe-
cially (e.g., by maintaining a history for them).

Separation of Duty has been studied extensively in Role-Based
Access Control (RBAC) [8, 9, 19]. Ferraiolo et al. [8] state, “one
of RBAC’s great advantages is that SoD rules can be implemented
in a natural and efficient way.” A purpose of this paper is to exam-
ine this statement in detail. In RBAC, permissions are associated
with roles, and users are granted membership in appropriate roles,
thereby acquiring the roles’ permissions. RBAC uses mutual ex-
clusion constraints to implement SoD policies. The most common
kind of mutual exclusion constraint is Statically Mutually Exclu-
sive Roles (SMER). An example of a SMER constraint is “no user
is allowed to be a member ofr1 and r2 simultaneously”. More
generally, a SMER constraint requires that no user is a member
of t or more roles in a set ofm roles{r1, r2, · · · , rm}. SMER
constraints are part of most RBAC models, including the RBAC96
models by Sandhu et al. [19] and the proposed NIST standard for
RBAC [9]. Literature in RBAC also studies dynamic mutually ex-
clusive role (DMER) constraints. With such a constraint, a user is
prevented from activating mutually exclusive roles simultaneously
in a session. SMER and DMER constraints are the only types of
constraints included in the proposed NIST standard for RBAC [9].
The rationale provided in that work is that such constraints are the
only ones prevalent in commercial RBAC products.

As we discuss in Section 2, DMER constraints are not suitable
for enforcing SoD policies, either statically or dynamically. On
the other hand, SMER constraints are suitable for enforcing SoD
policies statically. In this paper, we examine the use of SMER
constraints to enforce SoD policies.

SSoD policies areobjectivesthat need to be achieved. They exist
independent of whether RBAC is used to manage the access per-
missions or not. Each SSoD policy specifies the minimum number
of users that are allowed to together possess all permissions for a
sensitive task. On the other hand, SMER constraints aremecha-
nismsused to achieve SSoD policies. These constraints are specific
to RBAC. Each constraint limits the role memberships a user is al-
lowed to have.

In the literature, this distinction between objectives and mecha-
nisms is sometimes not clearly made. This is evident in the way
these constraints are referred to in the literature. SMER constraints
are often called Static SoD constraints, and DMER are called Dy-
namic SoD constraints.

When we make a clear distinction between objectives (SSoD
policies) and mechanisms (SMER constraints), several interesting
problems arise. For example, theverificationproblem is whether a
set of SMER constraints indeed enforces an SSoD policy, and the
generationproblem is how do we generate a set of constraints that
is adequate to enforce an SSoD policy. Although the use of SMER
constraints to support SoD has been studied for over a decade, sur-
prisingly these problems have not been examined in the literature
as such, to the best of our knowledge.

1.1 Contributions and organization
Our contributions in this paper are as follows.

• We provide precise definitions for SSoD policies and SMER
constraints, and for the verification and generation problems.

• We show that directly enforcing SSoD policies in RBAC is
intractable (coNP-complete), while enforcing SMER con-
straints is efficient.

• We show that the verification problem is intractable (coNP-
complete), even for a basic subcase of the problem, but re-
duces naturally to the satisfiability problem (SAT) [5], for

which there exist algorithms that have been proven to work
well in practice [5]. We discuss the implications of these re-
sults.

• We define what it means for a set of SMER constraints to
precisely enforce an SSoD policy, characterize the policies
for which such constraints exist, and show how they are gen-
erated. For other kinds of SSoD policies, we present an effi-
cient algorithm that generates sets of SMER constraints that
minimally enforce the policies.

The results reported here are fundamental to understand the ef-
fectiveness of using SMER constraints to enforce SoD in RBAC.
The verification and generation algorithms are also of practical sig-
nificance in RBAC systems that use SMER constraints to enforce
SSoD policies.

The remainder of the paper is organized as follows. We discuss
related work in the next section. In Section 3, we give definitions of
SSoD policies and SMER constraints, as well as the computational
complexities for enforcing them. In Section 4, we study the verifi-
cation problem. In Section 5, we study the generation problem. We
conclude with Section 6. Owing to space limitations, some proofs
are not included in this paper; they are available in [14].

2. RELATED WORK
The concept of SoD has long existed in the physical world, some-

times under the name “the two-man rule”, for example, in the bank-
ing industry and the military. To our knowledge, in the information
security literature the notion of SoD first appeared in Saltzer and
Schroeder [17] under the name “separation of privilege.” They
credited Roger Needham with making the following observation
in 1973: a protection mechanism that requires two keys to unlock
it is more robust and flexible than one that requires only a single
key. No single accident, deception, or breach of trust is sufficient
to compromise the protected information.

Clark and Wilson’s commercial security policy for integrity [3]
identified SoD along with well-formed transactions as two major
mechanisms of fraud and error control. The use of well-formed
transactions ensures that information within the computer system is
internally consistent. Separation of duty ensures that the objects in
the physical world are consistent with the information about these
objects in the computer system.

Sandhu [18] presented a history-based mechanism for dynami-
cally enforcing SoD policies. Nash and Poland [15] emphasized
the difference between dynamic and static enforcement of SoD
policies. In the former, a user may perform any step in a sensi-
tive task provided that the user does not also perform another step
on that data item. In the latter, users are constrained a-priori from
performing certain steps.

In one of the earliest paper on RBAC, Ferraiolo and Kuhn [6]
used the terms Static and Dynamic SoD to refer to static and dy-
namic enforcement of SoD. In a subsequent paper, Ferraiolo et
al. [7] defined Static SoD as: “A user is authorized as a member
of a role only if that role is not mutually exclusive with any of
the other roles for which the user already possesses membership”.
This is the requirement of SMER constraints and not an SoD pol-
icy. Similarly, Dynamic SoD was defined as forbidding a user from
activating roles that are mutually exclusive. We call these DMER
constraints. We believe that the terminology in [7] is confusing as
it blurs the distinction between objectives and mechanisms. The
same terminology is later used by several authors [1, 4, 11, 12, 20]
and is adopted in the NIST proposed standard for RBAC [9].

DMER constraints are introduced in [7] under the name DSoD
constraints. A DMER constraint prevents a user from simulta-

k-n SSoD policy k-out-of-n Static Separation of Duty policy Definition 1 in Section 3.1
t-m SMER constraint t-out-of-m Static Mutually Exclusive Roles Definition 4 in Section 3.2
k-n RSSoD requirement k-out-of-n Role-based Static Separation of Duty Definition 10 in Section 5.2
the SC-SSOD problem the Safety Checking problem for SSoD policies Definition 3 in Section 3.1
the SC-SMER problem the Satisfaction Checking problem for SMER constraintsDefinition 5 in Section 3.2
the EV problem the Enforcement Verification problem Definition 6 in Section 4
the CEV problem the Canonical Enforcement Verification problem Definition 8 in Section 4.1

Table 1: List of acronyms used in the paper, what they stand for, and where they are defined.

neously activating mutually exclusive roles in a session. DMER
constraints are called DSoD constraints because they are the “dy-
namic” version of SMER constraints, which are referred to as SSoD
constraints in [7]. However, as we now discuss, DMER constraints
do not seem to enforce SoD policies, because they do not prevents
a user from activating mutually exclusive roles across multiple ses-
sions. In RBAC, each session has only one user. Thus, a sensitive
task cannot be finished in one session; several sessions are required.
Consider the example discussed in Section 1. Suppose that the per-
mission to place an order and the permission to issue payment are
assigned to two different roles that are specified to be mutually ex-
clusive in a DMER constraint. Bob can start a session, activate the
role having the order permission, create an order, end the session,
start another session, activate the role having the payment permis-
sion, and authorize a payment against the order. This violates the
SoD policy.

Kuhn [13] discussed mutual exclusion of roles for separation of
duty and proposes a safety condition: that no one user should pos-
sess the privilege to execute every step of a task, thereby being able
to execute the task. We observe that our definition for safety in Sec-
tion 3.1 is a generalization of Kuhn’s definition [13]: settingk to
2 gives us Kuhn’s definition. Kuhn [13] did not discuss either the
verification problem or the generation problem.

Simon and Zurko [20] and Gligor et al. [11] discuss various kinds
of constraints and their use in RBAC. The latter discusses also the
composition of constraints. Both papers refer to the constraints
considered in them as SoD policies. As we discuss in this paper,
this has added to the confusion in the distinction between SoD poli-
cies and the constraint mechanisms that may be used to enforce
them.

Finally, several constraints languages [1, 12, 4] have been pro-
posed to support SoD in RBAC. These papers propose more so-
phisticated constraint mechanisms in RBAC; whereas we study the
effectiveness of using the most basic RBAC constraint mechanism,
namely SMER, to enforce SSoD policies.

3. STATIC SEPARATION OF DUTY AND
MUTUALLY EXCLUSIVE ROLES

In this section, we give precise definitions for Static Separation
of Duty policies, RBAC, and SMER constraints. Table 1 lists the
acronyms we use in this paper.

Usersandpermissionsare at the core of an access control sys-
tem. The state of an access control system specifies the set of per-
missions each user has. In this paper, we treat permissions as if
they are opaque, i.e., we do not consider the internal structure of
permissions. We assume also that permissions are not related to
one another, e.g., the possession of one or more permissions does
not imply the possession of another permission.

3.1 Static separation of duty (SSoD) policies

Definition 1. (SSoD policies) A k-n SSoD (k-out-of-n Static

Separation of Duty) policy is expressed as

ssod〈{p1, . . . , pn} , k〉

where eachpi is a permission andn andk are integers such that
1 < k ≤ n. This policy means that there should not exist a
set of fewer thank users that together have all the permissions in
{p1, . . . , pn}. In other words, at leastk users are required to per-
form a task that requires all these permissions.

The permissions in ak-n SSoD policy are the permissions
needed to carry out a sensitive task, and the policy guarantees that
at leastk users are needed to successfully execute it. The specifi-
cation of an SSoD policy involves identifying a sensitive task, the
permissions needed to complete it, and the minimum number of
collaborating users authorized to complete it.

We now introduce the notion of RBAC states. We assume that
there are three countably infinite sets:U (the set of all possible
users),R (the set of all possible roles), andP (the set of all possible
permissions).

Definition 2. (RBAC States) An RBAC stateγ is a 3-tuple
〈UA,PA,RH 〉, in which the user assignment relationUA ⊂ U ×
R associates users with roles, the permission assignment relation
PA ⊂ R× P associates roles with permissions, and the role hier-
archy relationRH ⊂ R × R is a partial order among roles inR.
When(r1, r2) ∈ RH , we say thatr1 is senior tor2, which means
that every user who is a member ofr1 is also a member ofr2, and
that every permission associated withr2 is also associated withr1.

An RBAC stateγ = 〈UA,PA,RH 〉 determines the set of roles
a user is a member of and the set of permissions a user possesses.
Formally,γ is associated with two functions,rolesγ: U → 2R and
permsγ : U → 2P , where2R is the powerset ofR, and2P is the
powerset ofP. The two functions are defined as follows:

rolesγ [u] =

{ r ∈ R | ∃r1 ∈ R [(u, r1) ∈ UA ∧ (r1, r) ∈ RH] }

permsγ [u] =

{ p ∈ P | ∃r1, r2 ∈ R [(u, r1) ∈ UA ∧

(r1, r2) ∈ RH ∧ (r2, p) ∈ PA] }

Definition 3. (SSoD Safety) We say that an RBAC stateγ is safe
with respect to an SSoD policyssod〈{p1, . . . , pn} , k〉 if in stateγ

nok−1 users together have all the permissions in the policy. More
precisely,

∀u1 · · ·uk−1 ∈ U

((

k−1
⋃

i=1

permsγ [ui]

)

6⊇ {p1, . . . , pn}

)

.

An RBAC stateγ is safewith respect to a setE of SSoD policies
if it is safe with respect to every policy in the set, and we write this
assafeE(γ).

SC-SSOD (the Safety Checking problem for SSoD policies) is
defined as follows: Given an RBAC stateγ and a setE of SSoD
policies, determine ifsafeE(γ) is true.

Observe that if nok − 1 users together have all the permissions
in a policy, then no set of fewer thank users together have all the
permissions.

Example 1.Consider the task of ordering and paying for goods
discussed in Section 1. We have a permission corresponding to
each step in the task; these permissions areporder , pinvoice , pgoods ,
andppayment . We have the following set of SSoD policies:

E1 = {e1, e2}
e1 = ssod〈{porder , pinvoice , pgoods , ppayment} , 3〉
e2 = ssod〈{porder , ppayment} , 2〉

Consider the RBAC stateγ1 = 〈UA1,PA1,RH 1〉,
where UA1 = {(Alice, Warehouse), (Alice, Finance),
(Bob, Accounting), (Bob, Quality), (Carl, Engineering)},
andPA1 andRH 1 are given in Figure 1. The stateγ1 is not safe
with respect toe1, a3-4 SSoD policy, as the 2 usersAlice andBob

together possess all 4 permissions ine1.

Given a setE of SSoD policies, suppose an RBAC system starts
at a state that is safe with respect toE. Each time one is about to
make a change to the system that may affect the safety, one checks
whether the RBAC state that results from the proposed change is
safe and makes the change only when the answer is affirmative.
Such a change may be adding a new user-role assignment toUA,
adding a new role-permission assignment toPA, or adding a new
pair toRH . This approach to ensuring that an RBAC system is safe
requires solving SC-SSOD, which turns out to be intractable.

THEOREM 1. SC-SSOD is coNP-complete.

PROOF. Consider the complement of SC-SSOD, i.e., given an
RBAC stateγ and a setE of SSoD policies, determine ifsafeE(γ)
is false, which is denoted bySC-SSOD. It suffices to show that
SC-SSOD is NP-complete.

We first show thatSC-SSOD is in NP. If an RBAC stateγ
is not safe wrt.E, then there exists ak-n SSoD policy inE and
k − 1 users such that inγ thesek − 1 users together have then
permissions in the SSoD policy. If one correctly guesses thek-n
SSoD policy being violated and thek−1 users that together have all
then permissions in the policy, verifying that the guess is correct
can be done in polynomial time: compute the union of thek − 1
users’ permissions and check whether it is a superset of the set of
permissions in the SSoD policy.

We now show thatSC-SSOD is NP-hard by reducing the set
covering problem to it. In the set covering problem, the inputs are
a finite setS, a family F = {S1, . . . , S`} of subsets ofS, and a
budgetB. The goal is to determine whether there existB sets inF
whose union isS. This problem isNP-complete [10, 16].

The reduction is straightforward. GivenS, F , andB, construct
an SSoD policye as follows: Let each element inS map to a per-
mission in the policy, letk beB + 1 and letn be the size ofS. We
have constructed ak-n SSoD policy. Construct an RBAC stateγ
as follows. For each corresponding permission inS, create a role
to which the permission is assigned. For each different subsetSi

(1 ≤ i ≤ `) in F , create a userui to which all roles inSi are as-
signed. The resulting RBAC stateγ is not safe with respect to{e}
if and only if B sets inF coverS.

In the proof reduction, each permission is assigned to one role
and the role hierarchy relation is empty; thus the problem remains
coNP-complete even when we restrict ourselves to the case of
RBAC without a role hierarchy. The fact that SC-SSOD is in-
tractable suggests that enforcing SSoD policies directly can be com-
putationally expensive.

With the following reasoning, we observe that even if we only
check whether an SSoD policy is violated when adding a new user-
to-role assignment, the check can be inefficient. Given an SSoD
policy e = ssod〈{p1, . . . , pn}, k〉 and an RBAC stateγ that is
safe with respect toe, suppose we want to check whether the state
γ′ that results from adding a new user-role assignment(u, r) is
safe with respect toe. Let i = |permsγ′ [u] ∩ {p1, . . . , pn}| be
the number of permissions ine that u would have inγ′, then we
are left with checking whetherγ′ is safe with respect to a(k−1)-
(n−i) SSoD policy, which remainscoNP-complete by the proof
of Theorem 1.

Efficient algorithms for SC-SSOD exist when all the SSoD poli-
cies inE have smallk. For example, when checking whetherγ is
safe with respect to a2-n SSoD policy, one only needs to compute
the set of permissions of every user and check whether it is a su-
perset of the permissions in the policy. This has worst-case time
complexityO(Nu(Nr +Np)), whereNu is the number of users in
γ, Nr the number of roles, andNp the number of permissions.

3.2 Statically mutually exclusive role (SMER)
constraints

In RBAC, constraints such as mutually exclusive roles are intro-
duced to enforce SSoD policies. In the most basic form, two roles
may be declared to be mutually exclusive in the sense that no user
is allowed to be a member of both roles. We now present a gener-
alized form of such constraints.

Definition 4. (SMER Constraints) A t-m SMER (t-out-of-m Stat-
ically Mutually Exclusive Role) constraint is expressed as

smer〈{r1, . . . , rm} , t〉

where eachri is a role, andm andt are integers such that1 < t ≤
m. This constraint forbids a user from being a member oft or more
roles in{r1, . . . , rm}.

A t-m SMER constraint is said to becanonicalof cardinality t

whent = m.

Definition 5. We say that an RBAC stateγ satisfiesat-m SMER
constraintsmer〈{r1, . . . , rm} , t〉 when

∀u ∈ U (| rolesγ [u] ∩ {r1, . . . , rm} | < t) .

Otherwise, we say thatγ violatesthe SMER constraint. An RBAC
statesatisfiesa setC of SMER constraints if it satisfies every con-
straint in the set, and we write it assatisfiesC(γ).

SC-SMER (the Satisfaction Checking problem for SMER con-
straints) is defined as follows: Given an RBAC stateγ and a setC
of SMER constraints, determine whetherγ satisfiesC.

Each SMER constraint restricts the role memberships of a single
user, in contrast to ak-n SSoD policy, which restricts the permis-
sions possessed by a set ofk − 1 users. Therefore, there is an
efficient algorithm to check whether an RBAC stateγ satisfies a set
C of SMER constraints.

THEOREM 2. SC-SMERis in P.

PROOF. The algorithm is as follows. For eacht-m SMER con-
straint inC and for each user inγ, one first computes the set of
all roles the user is a member of, then counts how many roles in
this set also appear in the set of roles in the SMER constraint, and
finally compare this number witht. This algorithm has a time com-
plexity of O(NuNrM), whereNu is the number of users inγ, Nr

the number of roles inγ, andM is the number of constraints.

Employee

Engineering Quality Warehouse Accounting Finance

order goods invoice payment

�
�

�
�

H
H

H
H

XXXXXXXXXXXXXXXXX

H
H

H
H

H
H

H
HH

�
�

�
�

�
�

�
��

�����������������

RH 1 = { (Engineering, Employee), (Quality, Employee), (Warehouse, Employee),
(Accounting, Employee), (Finance, Employee) }.

PA1 = { (Engineering, porder), (Quality, porder), (Warehouse, pgoods),
(Accounting, pinvoice), (Finance, ppayment) }.

Figure 1: A sample role hierarchy and permission assignment. Roles are shown in solid boxes, and permissions in dashed boxes. A
line segment represents either a role-role relationship, or the assignment of a permission to a role.

Given an RBAC stateγ that satisfies a setC of SMER con-
straints, in order to ensure that the state that results from adding
a new user-role assignment toγ still satisfiesE, one needs to only
check the role memberships of that user, which can be done in time
O(NrM). This is more efficient than solving the SC-SSOD prob-
lem each time an assignment is added to ensure that the state that
results is safe with respect to the SSoD policies.

4. THE ENFORCEMENT VERIFICATION
PROBLEM

The facts that SC-SSOD is intractable and that an efficient algo-
rithm exists for SC-SMER provide a justification for using SMER
constraints to enforce SSoD policies. This justification is new to
the best of our knowledge, as the computational complexity of
SC-SSOD has not been studied in the literature.

When using SMER constraints to enforce SSoD policies, a natu-
ral question to ask is whether a set of SMER constraints is adequate
to enforce a set of SSoD policies. The answer to this question de-
pends also on the permission assignmentPA and the role hierarchy
RH . For instance, if all permissions in an SSoD policy are assigned
to a role, then no set of SMER constraints enforces that policy.

Definition 6. Given PA ⊂ R × P, RH ⊂ R × R, a setE
of SSoD policies, and a setC of SMER constraints. We sayC
enforcesE (underPA andRH) when

∀UA ⊂ U ×R [satisfiesC(〈PA,RH ,UA〉)

⇒ safeE(〈PA,RH ,UA〉)]

EV (the Enforcement Verification problem) is defined as follows:
GivenPA,RH , a setE of SSoD policies, and a setC of SMER
constraints, determine whetherC enforcesE (underPA andRH).

Example 2.Continuing from Example 1, we consider the fol-
lowing set of SMER constraints

C1 = {c1, c2, c3}
c1 = smer〈{Warehouse, Accounting, Finance}, 2〉
c2 = smer〈{Engineering, Finance}, 2〉
c3 = smer〈{Quality, Finance}, 2〉

The constraintc1 ensures that no user is a member of any two roles

in Warehouse, Accounting, andFinance; thus, the smallest num-
ber of users that have memberships in all the three roles is three,
and therefore, the smallest number of users that the permissions
pgoods , pinvoice , andppayment is also three. This ensures safety with
respect to the SSoD policye1. The constraintsc2 andc3 together
ensure safety with respect toe2. ThusC1 enforcesE1 underPA1

andRH 1.
In Example 1, we observed that the stateγ1 is not safe with re-

spect toE1; therefore, it does not satisfyC1. In particular,γ1 vio-
lates the constraintc1 because Alice is assigned to bothWarehouse

andAccounting.

We now establish an upper bound on the computational com-
plexity of EV.

LEMMA 3. EV is in coNP.

PROOF. Consider the complement of EV, i.e., givenPA, RH ,
C, and E, does there exist a user-role assignment such that
satisfiesC(〈UA,PA,RH 〉) is true, butsafeE(〈UA,PA,RH 〉) is
false, which is denoted byEV. It suffices to show thatEV is in
NP. To show this, we need to show that givenPA, RH , C, and
E, if C does not enforceE underPA andRH , then a short (poly-
nomial in the input size) evidence exists such that it can be verified
in polynomial time.

If a set C of t-m SMER constraints does not enforce a set
E of k-n SSoD policies underPA and RH , then there ex-
ists a counter-example, i.e., a user-role assignmentUA such that
satisfiesC(〈UA,PA,RH 〉) is true butsafeE(〈UA,PA,RH 〉) is
false. That is, there exists ak-n SSoD policy inE that is violated
by k − 1 users. If such anUA exists, then a subset of theUA that
consists of just thek − 1 users is also a counter-example. Thus,
the smallest counter-example has size linear in the size of the in-
put. Once the counter-example is guessed, its correctness can be
verified in time polynomial in the size of the input. This shows that
EV is in NP.

4.1 A special case of theEV problem
In this section, we show that every set of SMER constraints can

be equivalently represented using a set of canonical (t-t) SMER
constraints. Therefore, we need to consider only such constraints.
We then study the enforcement verification problem for canonical
SMER constraints.

Definition 7. (SMER Equivalence) Let C1 andC2 be two sets of
SMER constraints. We say thatC1 andC2 areequivalentwhen for
every RBAC stateγ, γ satisfiesC1 if and only if γ satisfiesC2.

Clearly, if C1 andC2 are equivalent, thenC1 enforces a set of
SSoD policiesE underPA andRH if and only if C2 enforces
E underPA andRH ; thus one can replaceC1 in an EV problem
instance withC2 and vice versa with no change to the enforcement.

LEMMA 4. For everyt-m SMER constraintc, there exists a set
C′ of canonical SMER constraints of cardinalityt such thatC′ and
{c} are equivalent.

PROOF. Given at-m SMER constraintc = 〈{r1, . . . , rm} , t〉,
wherem > t. Let C′ be

{ smer〈R, t〉 | R ⊂ {r1, . . . , rm} ∧ |R| = t }.

That is,C′ is the set of all constraintssmer〈R, t〉 such thatR is a
size-t subset of{r1, . . . , rm}. It is easy to see that the violation of
any constraint inC′ implies the violation of the constraintc and the
violation of the constraintc implies the violation of some constraint
in C′. Therefore,C′ and{c} are equivalent.

It follows from Lemma 4 that for every setC of SMER con-
straints, there exists a setC′ of canonical SMER constraints such
thatC andC′ are equivalent with respect to the allowed configu-
rations. Furthermore, given an instance of EV in which the setE

contains more than one SSoD policy, one can verify these policies
one by one. Therefore, without loss of generality, we assume that
E is a singleton set, i.e.,E = {e} consists of one policy. This
enables us to limit our attention to the following special case of
EV.

Definition 8. CEV (the Canonical Enforcement Verification
problem) is defined as follows: GivenPA, RH , a singleton set
{e} of SSoD policies and a setC of canonical SMER constraints,
determine whetherC enforces{e}.

An algorithm solving CEV can be used to solve EV, as any EV
instance can be translated into a set of CEV instances. However,
the resulting CEV instance may have an exponential blowup in
size, as we would have

(

m

t

)

canonical SMER constraints for each
t-m SMER constraint. On the other hand, if an RBAC system uses
only canonical constraints to start with, then such blowup does not
occur. Also, in the case thatt = 2, we have a CEV instance whose
size is quadratic inm.

4.2 Algorithms and complexity for CEV
It is easier to think about the complement of CEV, denoted by

CEV: If C does not enforce{ssod〈{p1, · · · , pn}, k〉}, then there
exists a user-to-role assignment fork − 1 users such that all the
SMER constraints inC are satisfied but thesek − 1 users together
possess all permissions{p1, · · · , pn}. It turns out that this problem
is closely related to SAT, the satisfiability problem of propositional
formulas in conjunctive normal form. See Appendix A for an in-
troduction to SAT.

THEOREM 5. CEV reduces toSAT.

The proof of this theorem is in [14].
An implication of the existence of such a reduction is that we can

use algorithms for SAT to solve CEV. Given a CEV instance, the
answer is yes if and only if the corresponding SAT instance is not
satisfiable.

We now show that CEV iscoNP-hard by showing that a spe-
cial case of it iscoNP-complete. The special case we consider is
whether a set of2-2 SMER constraints satisfies a2-n SSoD policy.
Recall that a2-2 SMER constraint specifies that two roles are mu-
tually exclusive, i.e., no user can be a member of both roles. This
is the most common kind of constraints considered in the litera-
ture. A2-n SSoD specifies that no single user is allowed to possess
all of n given permissions. This is the simplest and most common
kind of SSoD policy. This special case is thus arguably the simplest
verification problem.

THEOREM 6. Determining whether a set of2-2 SMER con-
straints enforces a2-n SSoD policy iscoNP-complete.

PROOF. It follows from Lemma 3. that this problem is in
coNP.

We can prove that this problem iscoNP-hard by reduc-
ing MONOTONE-3-2-SAT to the complement of this problem.
MONOTONE-3-2-SAT is a special case of SAT where each clause
contains either three positive literals or two negative literals. The
details of the reduction and the proof that MONOTONE-3-2-SAT
is NP-complete is in [14].

COROLLARY 7. EV andCEV arecoNP-complete.

PROOF. Follows directly from Lemma 3 and Theorem 6.

4.3 Efficiency of verification in practice
The fact that even the most basic form of EV is intractable is

surprising. Enforcing SSoD policies directly by solving SC-SSOD
is efficient for2-n SSoD policies. These results cast doubts on the
effectiveness of the approach of using SMER constraints to enforce
SSoD policies, which has been adopted in the literature without
being questioned for years. However, complexity class is only part
of the story, and we now make some observations in favor of this
approach.

When using SMER constraints to enforce SSoD policies, EV,
which can be computationally expensive, needs to be performed
only when either a new role-role relationship is added to the role
hierarchy or a permission in an SSoD policy is assigned to some
role. When a user is assigned to a role, only constraint checking
(SC-SMER) needs to be performed, which is quite efficient. On
the other hand, when enforcing SSoD policies directly, the expen-
sive safety checking (SC-SSOD) needs to be performed every time
a user is assigned to a role of which the user was not already a
member. As user-to-role assignment is the most dynamic relation,
enforcing SSoD policies directly is overall more expensive than us-
ing SMER constraints.

In the proof of Theorem 6, we use a reduction from
MONOTONE-3-2-SAT to CEV. In the reduction we generate a
2-n SSoD policy withn being unbounded. When a sensitive task
involves only a small number of permissions, CEV can be done
efficiently.

Even though CEV is intractable (coNP-complete), it means
only that there exist difficult problem instances that take exponen-
tial amount of time in the worst case using existing algorithms.
SAT has been studied extensively for several decades (see e.g. [5]).
Many clever algorithms exist that can answer most instances effi-
ciently. Problems in many fields, including databases, planning,
computer-aided design, machine vision and automated reasoning,
are reduced to SAT and solved using SAT algorithms. This often
results in better performance than solving those problems directly.
The fact that CEV naturally reduces to SAT means that one can
benefit from the extensive research on SAT to provide practical en-
forcement checking.

The complexity of SC-SSOD is calculated in the number of
users plus the number of roles and the complexity of CEV is cal-
culated in the number of roles only. (In both cases, one needs to
consider only the permissions in the SSoD policies, rather than all
permissions in the RBAC state.) Given that most RBAC systems
have many more users than roles, enforcement verification is likely
to be more efficient in practice.

Finally, although checking whether an arbitrary set of SMER
constraints enforces a set of SSoD policies may be expensive, SMER
constraints may be generated from a set of SSoD policies and need
not be verified. We discuss the generation of contraints in the fol-
lowing section.

5. GENERATING SMER CONSTRAINTS
Section 4 considers the problem of verifying that SMER con-

straints in RBAC enforce the desired SSoD policies. In this section
we study the problem of generating a set of SMER constraints that
are adequate for enforcing SSoD policies. We examine the follow-
ing questions: How do we define a notion of precision in enforc-
ing SSoD policies, as there are often multiple sets of constraints
that enforce the same set of SSoD policies? How do we compare
the “degree of restriction” of different sets of SMER constraints?
What kinds of SMER constraints are needed in expressing SSoD
policies, e.g., do3-3 SMER constraints add additional expressive
power over2-2 SMER constraints?

5.1 Enforceability of SSoD policies

Definition 9. (Enforceable SSoD configurations) We definean
SSoD configurationto be a 3-tuple〈PA,RH , E〉, whereE is a set
of SSoD policies. An SSoD configuration isenforceableif there
exists a setC of SMER constraints such thatC enforcesE under
PA andRH .

LEMMA 8. An SSoD configuration〈PA,RH , E〉 is not
enforceable if and only if there exists an SSoD policy
ssod〈{p1, · · · , pn}, k〉 in E such thatk − 1 roles together have
all the permissions in{p1, · · · , pn}.

PROOF. If there exists such an SSoD policy, then no matter what
set of SMER constraints we use, one can always assignk−1 differ-
ent users to thek−1 roles without violating any SMER constraint,
resulting in an unsafe state. On the other hand, if there does not
exist such an SSoD policy, one can use2-2 SMER constraints to
declare every pair of roles inPA andRH to be mutually exclusive,
this forbids any user from being assigned to two roles. Clearly, any
state satisfying these constraints is safe.

THEOREM 9. Determining whether an SSoD configuration is
enforceable iscoNP-complete.

The proof can be found in [14]; it is very similar to that of The-
orem 1.

Similar to SC-SSOD, efficient algorithms exist when all the SSoD
policies in the configuration have smallk.

5.2 RSSoD requirements
As SMER constraints are about role memberships and SSoD

policies are about permissions, the first step in the generation of
such constraints is to translate a policy on permissions to require-
ments on roles, using information inPA andRH . We now define
such role-level SSoD requirements.

Definition 10. (RSSoD requirements) A k-n RSSoD (k-out-of-n
Role-based Static Separation of Duty) requirement has the form

rssod〈{r1, . . . , rn} , k〉

where eachri is a role andn andk are integers such that1 < k ≤
n. The meaning is that there should not exist a set of fewer than
k users that together have memberships in all then roles in the
requirement. We also sayk users are required tocoverthe set ofn
roles.

We say that an RBAC stateγ is safewith respect to the above
RSSoD requirement when

∀u1 · · ·uk−1 ∈ U

((

k−1
⋃

i=1

rolesγ [ui]

)

6⊇ {r1, . . . , rn}

)

.

An RBAC stateγ is safewith respect to a setD of RSSoD require-
ments if it is safe with respect to every requirement inD, and we
write it assafeD(γ).

Given an SSoD configuration〈PA,RH , E〉, we say that it is
equivalentto a setD of RSSoD requirements if

∀UA ⊂ U ×R [safeE(〈UA,PA,RH 〉) ⇔

safeD(〈UA,PA,RH 〉)]

where⇔ means logical equivalence.

Example 3.The SSoD configuration given in Figure 1 is equiv-
alent to the following set of RSSoD requirements.

D1 = {d1, d2, d3, d4}
d1 = rssod〈{ Engineering, Warehouse, Accounting,

Finance} , 3〉
d2 = rssod〈{ Quality, Warehouse, Accounting,

Finance} , 3〉
d3 = rssod〈{ Engineering, Finance} , 2〉
d4 = rssod〈{ Quality, Finance} , 2〉

In [14] we discuss the generation of RSSoD requirements
that are equivalent to SSoD configurations. A special case
is when we are given an SSoD configuration〈PA,RH , {e =
ssod〈{p1, . . . , pn} , k〉}〉, and each permissionpi is assigned to
exactly one roleri in PA and RH . Then the configuration
is equivalent to the singleton set of RSSoD requirement{d =
ssod〈{r1, . . . , rn} , k〉}.

In the rest of this section, we discuss the generation of a set of
SMER constraints to enforce one RSSoD requirement.

5.3 Precise enforcement of RSSoD
requirements

From the proof of Lemma 8, it is clear that any enforceable SSoD
configuration can be enforced using only2-2 SMER constraints.
This shows the power of2-2 SMER constraints: they are sufficient
to enforce any enforceable SSoD policy. However this might be at
a great cost in terms of flexibility.

Ideally, one would like to generate SMER constraints that “pre-
cisely capture” the restrictions inherent to the RSSoD requirements.
We now formalize this.

Definition 11. Let D be a set of RSSoD requirements andC be
a set of SMER constraints, we say thatC enforcesD when

∀ RBAC stateγ [satisfiesC(γ) ⇒ safeD(γ)]

We say thatC is necessary to enforceD when

∀ RBAC stateγ [safeD(γ) ∧ liveD(γ) ⇒ satisfiesC(γ)]

whereliveD(γ) means that for every roler appearing inD, there
exists a user who is a member ofr.
We sayC precisely enforcesD if C enforcesD and is necessary to
enforceD. Sometimes we abuse the terminology slightly and say
a constraintc enforces an RSSoD requirementd.

We now give two cases where precise enforcement is possible.

LEMMA 10. Given a k-k RSSoD requirementd =
rssod〈{r1, · · · , rk}, k〉, the constraintc = smer〈{r1, · · · , rk}, 2〉
precisely enforcesd.

PROOF. The requirementd means thatk users are required to
cover allk roles. The constraintc means that no user is allowed to
be a member of2 roles in the set. We first show thatc enforcesd. If
no user is a member of2 roles from the set ofk roles, then clearly
k users are needed to cover thek roles. To show thatc is necessary,
consider the following. Given an RBAC stateγ that violatesc, we
show thatlive{d}(γ) and safe{d}(γ) cannot both be true. Asγ
violatesc, there exists a user who has memberships in2 roles from
the set ofk roles. If live{d}(γ) is true, then for every role other
than the2 roles there exists a user who is a member of it. Thus
k − 1 users cover thek roles, andsafe{d}(γ) is false.

LEMMA 11. Given a 2-n RSSoD requirement
d = rssod〈{r1, · · · , rn}, 2〉, the constraint c =
smer〈{r1, · · · , rn}, n〉 precisely enforces the configuration.

PROOF. The requirementd means that2 users are required to
cover alln roles. The constraintc means that no user is allowed to
be a member of all the roles in the set. We first show thatc enforces
e. If no user is a member of alln roles from the set, then clearly,
at least2 users are required to cover all then roles. To show that
c is necessary, consider the following. Given an RBAC stateγ that
violatesc, there is a user that is a member of all roles from the set
of n roles. Thussafe{d}(γ) must be false.

In fact, as we prove in Lemma 19 (in Section 5.5 after results
needed for the proof have been developed), for everyk andn such
that2 < k < n, there exists no set of SMER constraints that pre-
cisely enforces ak-n RSSoD requirement. That is, the two special
cases in Lemmas 10 and 11 are the only cases where precise en-
forcement can be achieved. As precise enforcement is not achiev-
able in many cases, we give a method to generate “good” sets of
SMER constraints that are as precise as possible.

5.4 Expressive power of differentt-m SMER
constraints

Before discussing the generation of “good” sets of SMER con-
straints, we look at the expressive power oft-m SMER constraints
using different values oft andm. We would like to answer ques-
tions such as: Does an RBAC system that supports3-3 SMER
constraints have more expressive power than an RBAC system that
supports only2-2 SMER constraints? Answers to such questions
will help developers of RBAC systems to decide which kinds of
constraints to support.

From Lemma 4 we know thatt-m SMER constraints, where
m > t, can be equivalently represented usingt-t SMER con-
straints. From Lemma 8, we know that2-2 SMER constraints are
sufficient for enforcing (albeit not always precisely) any enforce-
able SSoD configuration. We now show that2-2 SMER constraints
(or 2-n SMER constraints which can be equivalently expressed us-
ing 2-2 SMER constraints) are required in the sense that they can-
not be replaced with otherk-n SMER (wherek ≥ 3) constraints.

LEMMA 12. There exist RSSoD requirements that cannot be
enforced without using2-n SMER constraints.

PROOF. A t-t RSSoD requirement can be enforced only by us-
ing 2-n SMER constraints, as these are the only type of constraints
that prevent two roles from being assigned to a single user.

Although2-2 SMER constraints are sufficient to enforce all en-
forceable SSoD configurations, other constraints are needed to en-
force some SSoD configurations more precisely.

LEMMA 13. For any n > 2, there exists an RSSoD require-
ment that can be precisely enforced using a canonical constraint of
cardinalityn but cannot be precisely enforced using any set oft-m
SMER constraints witht < n.

PROOF. Consider the 2-n RSSoD requirementd =
rssod〈{r1, · · · , rn}, 2〉 (at least2 users are required to cover the
n roles). Then-n SMER constraintc = smer〈{r1, · · · , rn}, n〉
(no single user is allowed to a member of alln roles) precisely
enforces the configuration, as was shown in lemma 10.

We now show that no set oft-m SMER constraints witht < n

precisely enforcesd. Assume, for the sake of contradiction, that
there exists such a set. Then there exists a setC of canonical con-
straints of cardinalities less thann that also precisely enforcesd. At
least one constraint,c, in C must be such that all roles in the con-
straint are in{r1, · · · , rn}; otherwise, one could assign one user
to have all roles in{r1, · · · , rn} without violating any constraint
in C. Becausec is a canonical constraint of cardinalityt < n,
the setS of roles inc is a strict subset of{r1, · · · , rn}. This con-
straintc is not necessary for implementing the SSoD configuration,
as an RBAC state in which a user is assigned to be a member of all
roles inS is safe with respect to the requirementd, as long as the
member is not a member of some role in{r1, · · · , rn} − S.

This lemma suggests that if one wants to enforce an arbitrary
RSSoD requirement as precisely as possible, then one needs to sup-
portn-n SMER constraints for arbitraryn.

5.5 “Good” sets of SMER constraints and their
generation

As we show in this section (Lemma 19), SSoD policies cannot
always be precisely enforced. Thus it is desirable to compare dif-
ferent sets of SMER constraints and determine which set “more
precisely” enforces a set of SSoD policies. In this section, we first
discuss the notion of precise enforcement. We then present an al-
gorithm to generate singleton sets of SMER constraints that are as
precise as possible.

Definition 12. Let C1 andC2 be two sets of SMER constraints.
We say thatC1 is at least as restrictive asC2 (denoted byC1�C2)
if

∀ RBAC stateγ
[

satisfiesC1
(γ) ⇒ satisfiesC2

(γ)
]

.

The� relation among all sets of SMER constraints is a partial or-
der. WhenC1 � C2 but notC2 � C1, we say thatC1 is more
restrictive thanC2 (denoted byC1 � C2). By definition,C1 and
C2 areequivalent(Definition 7) if and only ifC1�C2 andC2�C1.

When neitherC1 � C2 nor C2 � C1, we sayC1 andC2 are
incomparable.

When bothC andC′ enforce a setD of RSSoD requirements,
there are four cases: (1)C � C′; (2) C′

� C (3); C andC′ are
equivalent; and (4)C andC′ are incomparable. In case (1),C′ is
preferable toC for enforcingD as it is less restrictive (and thus
more precise). Similarly, in case (2),C is preferable toC′. In case
(3), eitherC or C′ can be used; the choice does not matter. In case
(4), the decision to chooseC overC′ (or C′ overC) depends on
considerations other than SSoD policies.

Definition 13. Given a setD of RSSoD requirements, we say
that a setC of SMER constraints isminimal for enforcingD if C

enforcesD and there does not exist a different setC′ of SMER
constraints such thatC′ also enforcesD andC � C′ (C is more
restrictive thanC′).

Our approach to dealing with the generation problem is to gener-
ate all the sets of SMER constraints that are minimal for enforcing
D (for any such set, no other set is more preferable than it) and
leave the decision to choose which one to use to the system admin-
istrator.

LEMMA 14. If a setC of SMER constraints precisely enforces
a setD of RSSoD requirement, then for anyC′ that also enforces
D, C′

� C, i.e.,C′ is at least as restrictive asC.

PROOF. We need to show that: (a) for every RBAC stateγ,
satisfiesC′(γ) impliessatisfiesC(γ). We show that this is equiv-
alent to proving (b) for every RBAC stateγ′ such thatliveD(γ′),
satisfiesC′(γ′) impliessatisfiesC(γ′). (a) clearly implies the (b).
We now show that (b) implies (a). Suppose, for the sake of contra-
diction, that (b) is true but (a) is not, then there exists a stateγ such
thatsatisfiesC′(γ) is true, butsatisfiesC(γ) is not. If such a state
γ exists, then there exists a stateγ1 such that the role hierarchy rela-
tion in γ1 is empty, andsatisfiesC′(γ1) is true, butsatisfiesC(γ1)
is false. The stateγ1 can be constructed by computing all role mem-
berships inγ and assigning these role memberships usingUA. We
now construct a stateγ2 by adding toγ1 the following user-to-role
assignments: for each roler mentioned inD assign a new user
(one who is not a member of any role inγ1) to be a member of
r. (Different users are used for different roles, so each new useris
a member of exactly one role.) We denote the resulting stateγ2.
Clearly,liveD(γ2) is true. Furthermore,satisfiesC′(γ) if and only
if satisfiesC′(γ2), andsatisfiesC(γ) if and only if satisfiesC(γ2).
Therefore,satisfiesC′(γ2) is true butsatisfiesC(γ2) is not. This
is in contradiction to (b) being true.

If C′ enforcesD, then for everyγ such that liveD(γ) is
true, satisfiesC′(γ) implies safeD(γ), which further implies
satisfiesC(γ). ThusC′ is at least as restrictive asC.

LEMMA 15. LetC be a set of SMER constraints that precisely
enforces a setD of RSSoD requirements.C is minimal for enforc-
ing D. Furthermore, ifC1 is also minimal for enforcingD, thenC

andC1 are equivalent.

PROOF. Given anyC′ that also enforcesD, it follows from
Lemma 14 thatC′

� C, thus it cannot beC � C′ (which implies
that¬(C′

� C)).
Given anyC1 that is also minimal for enforcingD, it follows

from Lemma 14 thatC1 � C. By Definition 13, it cannot be that
C1 � C; thusC1 andC must be equivalent.

LEMMA 16. Given a setD of RSSoD requirements, if bothC1

andC2 are minimal for enforcingD andC1 andC2 are incompa-
rable, then there exists no setC of SMER constraints that precisely
enforcesD.

PROOF. By Contradiction. If there exist a setC that precisely
enforcesD, then from Lemma 15,C is equivalent toC1 and toC2.
This contradicts the fact thatC1 andC2 are incomparable.

We now present an algorithm that generates all singleton sets of
SMER constraints that are minimal for enforcing one RSSoD re-
quirement.

The SMER-Gen Algorithm
Input: RSSoD requirement rssod〈R, k〉
Output: a set S of minimal SMER constraints
1 let n = |R|, S = ∅
2 if k = 2
3 output smer〈R, n〉
4 else
5 for all j from 2 to

⌊

n−1

k−1

⌋

+ 1

6 let m = (k − 1)(j − 1) + 1
7 for each size-m subset R′ of R

8 output smer〈R′, j〉
9 end

Example 4.The above algorithm, with rssod

〈{Engineering, Warehouse, Accounting, Finance} , 3〉 as
input, generates the sets of SMER constraints{c4}, {c5}, {c6},
and{c7} where

c4 = smer〈{Warehouse, Accounting, Finance}, 2〉
c5 = smer〈{Engineering, Accounting, Finance}, 2〉
c6 = smer〈{Engineering, Warehouse, Finance}, 2〉
c7 = smer〈{Engineering, Warehouse, Accounting}, 2〉

Any SMER constraint from above is sufficient to satisfy the RSSoD
requirement. Each constraint is minimal and the constraints are in-
comparable with each other. Each leaves a different role uncon-
strained. For example, if one picksc5 as the constraint to use, then
the roleWarehouse is not constrained.

The correctness of this algorithm is justified by the following two
lemmas.

LEMMA 17. Given an RSSoD requirementd, each SMER con-
straint generated bySMER-Gen(d) is minimal for enforcingd.

LEMMA 18. Given an RSSoD requirementd, every SMER
constraint that is minimal for enforcingd is generated by
SMER-Gen(d).

The proofs for these two lemmas are in [14]. Lemmas 16 and 17
enable us to prove the following Lemma.

LEMMA 19. Given ak-n RSSoD requirement where2 < k <

n, there exists no set of SMER constraints that precisely enforces
it.

PROOF. It suffices to prove that when2 < k < n, the algorithm
generates at least two SMER constraints, as then, we know that
each such constraint is minimal (Lemma 17) and therefore there ex-
ists no set of SMER constraints that precisely enforces the RSSoD
requirement (Lemma 16). The details of the proof are in [14].

Our algorithm does not generate all sets of SMER constraints
that are minimal to enforce an RSSoD requirement. Constraint sets
of cardinality greater than 1 may exist that are minimal for enforc-
ing the requirement. Our algorithm generates all possible minimal
singleton sets ofk-m SMER constraints.

6. CONCLUSIONS AND FUTURE WORK
We have posed and answered several fundamental questions re-

lated to the use of SMER constraints to enforce SSoD policies,
while making a clear distinction between objectives and mecha-
nisms. We have shown that directly enforcing SSoD policies is in-
tractable (coNP-complete), while enforcing SMER constraints is
efficient. We have also shown that verifying whether a set of SMER

constraints enforces a set of SSoD policies is intractable (coNP-
complete), even for a basic subcase of the problem, but reduces
naturally to the satisfiability problem (SAT), for which there exist
algorithms that have been proven to work well in practice [5]. We
have discussed why these intractability results should not lead us to
conclude that SMER constraints are not an appropriate mechanism
for enforcing SSoD policies.

We have defined minimal and precise enforcement. We have also
characterized the kinds of policies for which precise enforcement
is achievable and shown what constraints precisely enforce such
policies. We have also presented an algorithm that generates all
singleton SMER constraint sets each of which minimally enforces
an RSSoD requirement.

An interesting problem that remains is whether the generation al-
gorithm can be improved to consider preexisting SMER constraints
and to consider a set of SSoD policies as a whole rather than indi-
vidually. Other kinds of constraints also have been proposed for
RBAC, e.g., cardinality constraints and constraints on permission
assignment [19]. It would be interesting to examine the use of
SMER constraints together with these constraints to enforce SSoD
policies.

Acknowledgement
Portions of this work were supported by NSF ITR, Purdue Research
Foundation, and sponsors of CERIAS. We thank Trent Jaeger for
helpful discussions. We thank the anonymous reviewers for their
helpful comments. We thank also Elisa Bertino, Ji-Won Byun,
Jiangtao Li and Klorida Miraj at CERIAS for reading a draft of
the paper and making suggestions that have improved the paper’s
presentation.

7. REFERENCES
[1] G.-J. Ahn and R. S. Sandhu. Role-based authorization

constraints specification.ACM Transactions on Information
and System Security, 3(4):207–226, Nov. 2000.

[2] M. Bishop.Computer Security — Art and Science.
Addison-Wesley, 2003.

[3] D. D. Clark and D. R. Wilson. A comparision of commercial
and military computer security policies. InProceedings of
the 1987 IEEE Symposium on Security and Privacy, pages
184–194. IEEE Computer Society Press, May 1987.

[4] J. Crampton. Specifying and enforcing constraints in
role-based access control. InProceedings of the Eighth ACM
Symposium on Access Control Models and Technologies
(SACMAT 2003), pages 43–50, Como, Italy, June 2003.

[5] D. Du, J. Gu, and P. M. Pardalos, editors.Satisfiability
Problem: Theory and Applications, volume 35 ofDIMACS
Series in Discrete Mathematics and Theoretical Computer
Science. AMS Press, 1997.

[6] D. Ferraiolo and R. Kuhn. Role-based access control. In
Proceedings of the 15th National Information Systems
Security Conference, 1992.

[7] D. F. Ferraiolo, J. A. Cuigini, and D. R. Kuhn. Role-based
access control (RBAC): Features and motivations. In
Proceedings of the 11th Annual Computer Security
Applications Conference (ACSAC’95), Dec. 1995.

[8] D. F. Ferraiolo, D. R. Kuhn, and R. Chandramouli.
Role-Based Access Control. Artech House, Apr. 2003.

[9] D. F. Ferraiolo, R. S. Sandhu, S. Gavrila, D. R. Kuhn, and
R. Chandramouli. Proposed NIST standard for role-based
access control.ACM Transactions on Information and
Systems Security, 4(3):224–274, Aug. 2001.

[10] M. R. Garey and D. J. Johnson.Computers And
Intractability: A Guide to the Theory of NP-Completeness.
W.H. Freeman and Company, 1979.

[11] V. D. Gligor, S. I. Gavrila, and D. Ferraiolo. On the formal
definition of separation-of-duty policies and their
composition. InProceedings of IEEE Symposium on
Research in Security and Privacy, pages 172–183, May
1998.

[12] T. Jaeger and J. E. Tidswell. Practical safety in flexible
access control models.ACM Transactions on Information
and System Security, 4(2):158–190, May 2001.

[13] D. R. Kuhn. Mutual exclusion of roles as a means of
implementing separation of duty in role-based access control
systems. InProceedings of the Second ACM Workshop on
Role-Based Access Control (RBAC’97), pages 23–30, Nov.
1997.

[14] N. Li, Z. Bizri, and M. V. Tripunitara. On mutually-exclusive
roles and separation of duty. Technical Report
CERIAS-TR-2004-21, Center for Education and Research in
Information Assurance and Security, Purdue University, June
2004.

[15] M. J. Nash and K. R. Poland. Some conundrums concerning
separation of duty. InProceedings of IEEE Symposium on
Research in Security and Privacy, pages 201–209, May
1990.

[16] C. H. Papadimitriou.Computational Complexity. Addison
Wesley Longman, 1994.

[17] J. H. Saltzer and M. D. Schroeder. The protection of
information in computer systems.Proceedings of the IEEE,
63(9):1278–1308, September 1975.

[18] R. S. Sandhu. Transaction control expressions for separation
of duties. InProceedings of the Fourth Annual Computer
Security Applications Conference (ACSAC’88), Dec. 1988.

[19] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-based access control models.IEEE Computer,
29(2):38–47, February 1996.

[20] T. T. Simon and M. E. Zurko. Separation of duty in
role-based environments. InProceedings of The 10th
Computer Security Foundations Workshop, pages 183–194.
IEEE Computer Society Press, June 1997.

APPENDIX

A. SAT
A boolean literal or variable is one that can take on a value from

{0, 1}. A boolean expression is one of the following: (a) a boolean
variable, (b)¬φ, (c) φ1 ∨ φ2, or (d) φ1 ∧ φ2, whereφ, φ1 and
φ2 are boolean expressions. (c) is called a disjunction, and (d) is
called a conjunction. A truth assignment to a boolean expression is
the assignment of either 0 or 1 to each variable in the expression. A
boolean expression is in Conjunctive Normal Form (CNF), if it can
be written as

∧n

i=1
Ci wheren ≥ 1 and eachCi is called a clause,

a clause is either a literal or a disjunction of literals, and a literal
is either a boolean variable or its complement. A boolean expres-
sion is satisfiable if there exists a truth assignment to it such that
it evaluates to 1. The SAT problem is the problem of determining
whether an expression in CNF is satisfiable. The complement of
the satisfiability problem is the validity problem: whether for any
truth assignment, the expression evaluates to 1.

